Goto

Collaborating Authors

 Amplayo, Reinald Kim


Agents' Room: Narrative Generation through Multi-step Collaboration

arXiv.org Artificial Intelligence

Writing compelling fiction is a multifaceted process combining elements such as crafting a plot, developing interesting characters, and using evocative language. While large language models (LLMs) show promise for story writing, they currently rely heavily on intricate prompting, which limits their use. We propose Agents' Room, a generation framework inspired by narrative theory, that decomposes narrative writing into subtasks tackled by specialized agents. To illustrate our method, we introduce Tell Me A Story, a high-quality dataset of complex writing prompts and human-written stories, and a novel evaluation framework designed specifically for assessing long narratives. We show that Agents' Room generates stories that are preferred by expert evaluators over those produced by baseline systems by leveraging collaboration and specialization to decompose the complex story writing task into tractable components. We provide extensive analysis with automated and human-based metrics of the generated output.


Scalable and Domain-General Abstractive Proposition Segmentation

arXiv.org Artificial Intelligence

Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


$\mu$PLAN: Summarizing using a Content Plan as Cross-Lingual Bridge

arXiv.org Artificial Intelligence

Cross-lingual summarization consists of generating a summary in one language given an input document in a different language, allowing for the dissemination of relevant content across speakers of other languages. However, this task remains challenging, mainly because of the need for cross-lingual datasets and the compounded difficulty of summarizing and translating. This work presents $\mu$PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge. We formulate the plan as a sequence of entities that captures the conceptualization of the summary, i.e. identifying the salient content and expressing in which order to present the information, separate from the surface form. Using a multilingual knowledge base, we align the entities to their canonical designation across languages. $\mu$PLAN models first learn to generate the plan and then continue generating the summary conditioned on the plan and the input. We evaluate our methodology on the XWikis dataset on cross-lingual pairs across four languages and demonstrate that this planning objective achieves state-of-the-art performance in terms of ROUGE and faithfulness scores. Moreover, this planning approach improves the zero-shot transfer to new cross-lingual language pairs compared to non-planning baselines.


Conditional Generation with a Question-Answering Blueprint

arXiv.org Artificial Intelligence

The ability to convey relevant and faithful information is critical for many tasks in conditional generation and yet remains elusive for neural seq-to-seq models whose outputs often reveal hallucinations and fail to correctly cover important details. In this work, we advocate planning as a useful intermediate representation for rendering conditional generation less opaque and more grounded. Our work proposes a new conceptualization of text plans as a sequence of question-answer (QA) pairs. We enhance existing datasets (e.g., for summarization) with a QA blueprint operating as a proxy for both content selection (i.e.,~what to say) and planning (i.e.,~in what order). We obtain blueprints automatically by exploiting state-of-the-art question generation technology and convert input-output pairs into input-blueprint-output tuples. We develop Transformer-based models, each varying in how they incorporate the blueprint in the generated output (e.g., as a global plan or iteratively). Evaluation across metrics and datasets demonstrates that blueprint models are more factual than alternatives which do not resort to planning and allow tighter control of the generation output.


Text-Blueprint: An Interactive Platform for Plan-based Conditional Generation

arXiv.org Artificial Intelligence

While conditional generation models can now generate natural language well enough to create fluent text, it is still difficult to control the generation process, leading to irrelevant, repetitive, and hallucinated content. Recent work shows that planning can be a useful intermediate step to render conditional generation less opaque and more grounded. We present a web browser-based demonstration for query-focused summarization that uses a sequence of question-answer pairs, as a blueprint plan for guiding text generation (i.e., what to say and in what order). We illustrate how users may interact with the generated text and associated plan visualizations, e.g., by editing and modifying the blueprint in order to improve or control the generated output. A short video demonstrating our system is available at https://goo.gle/text-blueprint-demo.