Amir Yehudayoff
Supervised learning through the lens of compression
Ofir David, Shay Moran, Amir Yehudayoff
This work continues the study of the relationship between sample compression schemes and statistical learning, which has been mostly investigated within the framework of binary classification. The central theme of this work is establishing equivalences between learnability and compressibility, and utilizing these equivalences in the study of statistical learning theory. We begin with the setting of multiclass categorization (zero/one loss). We prove that in this case learnability is equivalent to compression of logarithmic sample size, and that uniform convergence implies compression of constant size. We then consider Vapnik's general learning setting: we show that in order to extend the compressibility-learnability equivalence to this case, it is necessary to consider an approximate variant of compression. Finally, we provide some applications of the compressibility-learnability equivalences.
Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues
Noga Alon, Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran, Amir Yehudayoff
In this work we derive a variant of the classic Glivenko-Cantelli Theorem, which asserts uniform convergence of the empirical Cumulative Distribution Function (CDF) to the CDF of the underlying distribution. Our variant allows for tighter convergence bounds for extreme values of the CDF. We apply our bound in the context of revenue learning, which is a well-studied problem in economics and algorithmic game theory. We derive sample-complexity bounds on the uniform convergence rate of the empirical revenues to the true revenues, assuming a bound on the kth moment of the valuations, for any (possibly fractional) k > 1. For uniform convergence in the limit, we give a complete characterization and a zero-one law: if the first moment of the valuations is finite, then uniform convergence almost surely occurs; conversely, if the first moment is infinite, then uniform convergence almost never occurs.