Goto

Collaborating Authors

 Amer, Hossam


On-Device Emoji Classifier Trained with GPT-based Data Augmentation for a Mobile Keyboard

arXiv.org Artificial Intelligence

Emojis improve communication quality among smart-phone users that use mobile keyboards to exchange text. To predict emojis for users based on input text, we should consider the on-device low memory and time constraints, ensure that the on-device emoji classifier covers a wide range of emoji classes even though the emoji dataset is typically imbalanced, and adapt the emoji classifier output to user favorites. This paper proposes an on-device emoji classifier based on MobileBert with reasonable memory and latency requirements for SwiftKey. To account for the data imbalance, we utilize the widely used GPT to generate one or more tags for each emoji class. For each emoji and corresponding tags, we merge the original set with GPT-generated sentences and label them with this emoji without human intervention to alleviate the data imbalance. At inference time, we interpolate the emoji output with the user history for emojis for better emoji classifications. Results show that the proposed on-device emoji classifier deployed for SwiftKey increases the accuracy performance of emoji prediction particularly on rare emojis and emoji engagement.


Federated Learning Based Multilingual Emoji Prediction In Clean and Attack Scenarios

arXiv.org Artificial Intelligence

Federated learning is a growing field in the machine learning community due to its decentralized and private design. Model training in federated learning is distributed over multiple clients giving access to lots of client data while maintaining privacy. Then, a server aggregates the training done on these multiple clients without access to their data, which could be emojis widely used in any social media service and instant messaging platforms to express users' sentiments. This paper proposes federated learning-based multilingual emoji prediction in both clean and attack scenarios. Emoji prediction data have been crawled from both Twitter and SemEval emoji datasets. This data is used to train and evaluate different transformer model sizes including a sparsely activated transformer with either the assumption of clean data in all clients or poisoned data via label flipping attack in some clients. Experimental results on these models show that federated learning in either clean or attacked scenarios performs similarly to centralized training in multilingual emoji prediction on seen and unseen languages under different data sources and distributions. Our trained transformers perform better than other techniques on the SemEval emoji dataset in addition to the privacy as well as distributed benefits of federated learning.


Deep Selector-JPEG: Adaptive JPEG Image Compression for Computer Vision in Image classification with Human Vision Criteria

arXiv.org Artificial Intelligence

With limited storage/bandwidth resources, input images to Computer Vision (CV) applications that use Deep Neural Networks (DNNs) are often encoded with JPEG that is tailored to Human Vision (HV). This paper presents Deep Selector-JPEG, an adaptive JPEG compression method that targets image classification while satisfying HV criteria. For each image, Deep Selector-JPEG selects adaptively a Quality Factor (QF) to compress the image so that a good trade-off between the Compression Ratio (CR) and DNN classifier Accuracy (Rate-Accuracy performance) can be achieved over a set of images for a variety of DNN classifiers while the MS-SSIM of such compressed image is greater than a threshold value predetermined by HV with a high probability. Deep Selector-JPEG is designed via light-weighted or heavy-weighted selector architectures. Experimental results show that in comparison with JPEG at the same CR, Deep Selector-JPEG achieves better Rate-Accuracy performance over the ImageNet validation set for all tested DNN classifiers with gains in classification accuracy between 0.2% and 1% at the same CRs while satisfying HV constraints. Deep Selector-JPEG can also roughly provide the original classification accuracy at higher CRs.