Amarnath, Aporva
MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs
Moitra, Abhishek, Ghosh, Arkapravo, Agarwal, Shrey, Amarnath, Aporva, Swaminathan, Karthik, Panda, Priyadarshini
The computational and memory challenges of large language models (LLMs) have sparked several optimization approaches towards their efficient implementation. While prior LLM-targeted quantization, and prior works on sparse acceleration have significantly mitigated the memory and computation bottleneck, they do so assuming high power platforms such as GPUs and server-class FPGAs with large off-chip memory bandwidths and employ a generalized matrix multiplication (GEMM) execution of all the layers in the decoder. In such a GEMM-based execution, data is fetched from an off-chip memory, computed and stored back. However, at reduced off-chip memory capacities, as is the case with low-power edge devices, this implementation strategy significantly increases the attention computation latency owing to the repeated storage and fetch of large intermediate tokens to and from the off-chip memory. Moreover, fetching the weight matrices from a bandwidth constrained memory further aggravates the memory bottleneck problem. To this end, we introduce MEADOW, a framework that significantly reduces the off-chip memory access for LLMs with a novel token-parallel head-sequential (TPHS) dataflow. Additionally, MEADOW applies weight packing that performs loss-less decomposition of large weight matrices to their unique elements thereby, reducing the enormous weight fetch latency. MEADOW demonstrates 1.5x and 2.5x lower decode and prefill latency, respectively, compared to a GEMM-based LLM implementation on the low power Xilinx ZCU102 FPGA platform that consumes less than 10W. Additionally, MEADOW achieves an end-to-end latency improvement of over 40%, compared to prior LLM optimization works.
Unlocking Real-Time Fluorescence Lifetime Imaging: Multi-Pixel Parallelism for FPGA-Accelerated Processing
Erbas, Ismail, Amarnath, Aporva, Pandey, Vikas, Swaminathan, Karthik, Wang, Naigang, Intes, Xavier
Fluorescence lifetime imaging (FLI) is a widely used technique in the biomedical field for measuring the decay times of fluorescent molecules, providing insights into metabolic states, protein interactions, and ligand-receptor bindings. However, its broader application in fast biological processes, such as dynamic activity monitoring, and clinical use, such as in guided surgery, is limited by long data acquisition times and computationally demanding data processing. While deep learning has reduced post-processing times, time-resolved data acquisition remains a bottleneck for real-time applications. To address this, we propose a method to achieve real-time FLI using an FPGA-based hardware accelerator. Specifically, we implemented a GRU-based sequence-to-sequence (Seq2Seq) model on an FPGA board compatible with time-resolved cameras. The GRU model balances accurate processing with the resource constraints of FPGAs, which have limited DSP units and BRAM. The limited memory and computational resources on the FPGA require efficient scheduling of operations and memory allocation to deploy deep learning models for low-latency applications. We address these challenges by using STOMP, a queue-based discrete-event simulator that automates and optimizes task scheduling and memory management on hardware. By integrating a GRU-based Seq2Seq model and its compressed version, called Seq2SeqLite, generated through knowledge distillation, we were able to process multiple pixels in parallel, reducing latency compared to sequential processing. We explore various levels of parallelism to achieve an optimal balance between performance and resource utilization. Our results indicate that the proposed techniques achieved a 17.7x and 52.0x speedup over manual scheduling for the Seq2Seq model and the Seq2SeqLite model, respectively.
Compressing Recurrent Neural Networks for FPGA-accelerated Implementation in Fluorescence Lifetime Imaging
Erbas, Ismail, Pandey, Vikas, Amarnath, Aporva, Wang, Naigang, Swaminathan, Karthik, Radev, Stefan T., Intes, Xavier
Fluorescence lifetime imaging (FLI) is an important technique for studying cellular environments and molecular interactions, but its real-time application is limited by slow data acquisition, which requires capturing large time-resolved images and complex post-processing using iterative fitting algorithms. Deep learning (DL) models enable real-time inference, but can be computationally demanding due to complex architectures and large matrix operations. This makes DL models ill-suited for direct implementation on field-programmable gate array (FPGA)-based camera hardware. Model compression is thus crucial for practical deployment for real-time inference generation. In this work, we focus on compressing recurrent neural networks (RNNs), which are well-suited for FLI time-series data processing, to enable deployment on resource-constrained FPGA boards. We perform an empirical evaluation of various compression techniques, including weight reduction, knowledge distillation (KD), post-training quantization (PTQ), and quantization-aware training (QAT), to reduce model size and computational load while preserving inference accuracy. Our compressed RNN model, Seq2SeqLite, achieves a balance between computational efficiency and prediction accuracy, particularly at 8-bit precision. By applying KD, the model parameter size was reduced by 98\% while retaining performance, making it suitable for concurrent real-time FLI analysis on FPGA during data capture. This work represents a big step towards integrating hardware-accelerated real-time FLI analysis for fast biological processes.
A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and Probabilistic Decision Making
Subramanian, Chitra, Liu, Miao, Khan, Naweed, Lenchner, Jonathan, Amarnath, Aporva, Swaminathan, Sarathkrishna, Riegel, Ryan, Gray, Alexander
Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in optimizing the performance of systems where multiple agents coexist and compete for shared resources. However, applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc. To address these challenges, we present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods. The recently introduced neuro-symbolic Logical Neural Networks (LNN) framework serves as a function approximator for the RL, to train a rules-based policy that is both logical and interpretable by construction. To enable decision-making under uncertainty and partial observability, we developed a novel probabilistic neuro-symbolic framework, Probabilistic Logical Neural Networks (PLNN), which combines the capabilities of logical reasoning with probabilistic graphical models. In PLNN, the upward/downward inference strategy, inherited from LNN, is coupled with belief bounds by setting the activation function for the logical operator associated with each neural network node to a probability-respecting generalization of the Fr\'echet inequalities. These PLNN nodes form the unifying element that combines probabilistic logic and Bayes Nets, permitting inference for variables with unobserved states. We demonstrate our contributions by addressing key MARL challenges for power sharing in a system-on-chip application.