Goto

Collaborating Authors

 Alve, Shahran Rahman


Smart IoT Security: Lightweight Machine Learning Techniques for Multi-Class Attack Detection in IoT Networks

arXiv.org Artificial Intelligence

In the growing terrain of the Internet of Things (IoT), it is vital that networks are secure to protect against a range of cyber threats. Based on the strong machine learning framework, this study proposes novel lightweight ensemble approaches for improving multi-class attack detection of IoT devices. Using the large CICIoT 2023 dataset with 34 attack types distributed amongst 10 attack categories, we systematically evaluated the performance of a wide variety of modern machine learning methods with the aim of establishing the best-performing algorithmic choice to secure IoT applications. In particular, we explore approaches based on ML classifiers to tackle the biocharges characterized by the challenging and heterogeneous nature of attack vectors in IoT environments. The method that performed best was the Decision Tree, with an accuracy of 99.56% and an F1 score of 99.62%, showing that this model is capable of accurately and reliably detecting threats.The Random Forest model was the next best-performing model with 98.22% and an F1 score of 98.24%, suggesting that ML methods are quite effective in a situation of high-dimensional data. Our results highlight the potential for using ML classifiers in bolstering security for IoT devices and also serve as motivations for future investigations targeting scalable, keystroke-based attack detection systems. We believe that our method provides a new path to develop complex machine learning algorithms for low-resource IoT devices, balancing both accuracy and time efficiency needs. In summary, these contributions enrich the state of the art of the IoT security literature, laying down solid ground and guidelines for the deployment of smart, adaptive security in IoT settings.


Deep Learning and Hybrid Approaches for Dynamic Scene Analysis, Object Detection and Motion Tracking

arXiv.org Artificial Intelligence

This project aims to develop a robust video surveillance system, which can segment videos into smaller clips based on the detection of activities. It uses CCTV footage, for example, to record only major events-like the appearance of a person or a thief-so that storage is optimized and digital searches are easier. It utilizes the latest techniques in object detection and tracking, including Convolutional Neural Networks (CNNs) like YOLO, SSD, and Faster R-CNN, as well as Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs), to achieve high accuracy in detection and capture temporal dependencies. The approach incorporates adaptive background modeling through Gaussian Mixture Models (GMM) and optical flow methods like Lucas-Kanade to detect motions. Multi-scale and contextual analysis are used to improve detection across different object sizes and environments. A hybrid motion segmentation strategy combines statistical and deep learning models to manage complex movements, while optimizations for real-time processing ensure efficient computation. Tracking methods, such as Kalman Filters and Siamese networks, are employed to maintain smooth tracking even in cases of occlusion. Detection is improved on various-sized objects for multiple scenarios by multi-scale and contextual analysis. Results demonstrate high precision and recall in detecting and tracking objects, with significant improvements in processing times and accuracy due to real-time optimizations and illumination-invariant features. The impact of this research lies in its potential to transform video surveillance, reducing storage requirements and enhancing security through reliable and efficient object detection and tracking.


Optimized IoT Intrusion Detection using Machine Learning Technique

arXiv.org Artificial Intelligence

An application of software known as an Intrusion Detection System (IDS) employs machine algorithms to identify network intrusions. Selective logging, safeguarding privacy, reputation-based defense against numerous attacks, and dynamic response to threats are a few of the problems that intrusion identification is used to solve. The biological system known as IoT has seen a rapid increase in high dimensionality and information traffic. Self-protective mechanisms like intrusion detection systems (IDSs) are essential for defending against a variety of attacks. On the other hand, the functional and physical diversity of IoT IDS systems causes significant issues. These attributes make it troublesome and unrealistic to completely use all IoT elements and properties for IDS self-security. For peculiarity-based IDS, this study proposes and implements a novel component selection and extraction strategy (our strategy). A five-ML algorithm model-based IDS for machine learning-based networks with proper hyperparamater tuning is presented in this paper by examining how the most popular feature selection methods and classifiers are combined, such as K-Nearest Neighbors (KNN) Classifier, Decision Tree (DT) Classifier, Random Forest (RF) Classifier, Gradient Boosting Classifier, and Ada Boost Classifier. The Random Forest (RF) classifier had the highest accuracy of 99.39%. The K-Nearest Neighbor (KNN) classifier exhibited the lowest performance among the evaluated models, achieving an accuracy of 94.84%. This study's models have a significantly higher performance rate than those used in previous studies, indicating that they are more reliable.


Sdn Intrusion Detection Using Machine Learning Method

arXiv.org Artificial Intelligence

Software-defined network (SDN) is a new approach that allows network control to become directly programmable, and the underlying infrastructure can be abstracted from applications and network services. Control plane). When it comes to security, the centralization that this demands is ripe for a variety of cyber threats that are not typically seen in other network architectures. The authors in this research developed a novel machine-learning method to capture infections in networks. We applied the classifier to the UNSW-NB 15 intrusion detection benchmark and trained a model with this data. Random Forest and Decision Tree are classifiers used to assess with Gradient Boosting and AdaBoost. Out of these best-performing models was Gradient Boosting with an accuracy, recall, and F1 score of 99.87%,100%, and 99.85%, respectively, which makes it reliable in the detection of intrusions for SDN networks. The second best-performing classifier was also a Random Forest with 99.38% of accuracy, followed by Ada Boost and Decision Tree. The research shows that the reason that Gradient Boosting is so effective in this task is that it combines weak learners and creates a strong ensemble model that can predict if traffic belongs to a normal or malicious one with high accuracy. This paper indicates that the GBDT-IDS model is able to improve network security significantly and has better features in terms of both real-time detection accuracy and low false positive rates. In future work, we will integrate this model into live SDN space to observe its application and scalability. This research serves as an initial base on which one can make further strides forward to enhance security in SDN using ML techniques and have more secure, resilient networks.


Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy

arXiv.org Artificial Intelligence

A significant challenge in automating hate speech detection on social media is distinguishing hate speech from regular and offensive language. These identify an essential category of content that web filters seek to remove. Only automated methods can manage this volume of daily data. To solve this problem, the community of Natural Language Processing is currently investigating different ways of hate speech detection. In addition to those, previous approaches (e.g., Convolutional Neural Networks, multi-channel BERT models, and lexical detection) have always achieved low precision without carefully treating other related tasks like sentiment analysis and emotion classification. They still like to group all messages with specific words in them as hate speech simply because those terms often appear alongside hateful rhetoric. In this research, our paper presented the hate speech text classification system model drawn upon deep learning and machine learning. In this paper, we propose a new multitask model integrated with shared emotional representations to detect hate speech across the English language. The Transformer-based model we used from Hugging Face and sentiment analysis helped us prevent false positives. Conclusion. We conclude that utilizing sentiment analysis and a Transformer-based trained model considerably improves hate speech detection across multiple datasets.