Goto

Collaborating Authors

 Alvari, Hamidreza


Entailed Between the Lines: Incorporating Implication into NLI

arXiv.org Artificial Intelligence

Much of human communication depends on implication, conveying meaning beyond literal words to express a wider range of thoughts, intentions, and feelings. For models to better understand and facilitate human communication, they must be responsive to the text's implicit meaning. We focus on Natural Language Inference (NLI), a core tool for many language tasks, and find that state-of-the-art NLI models and datasets struggle to recognize a range of cases where entailment is implied, rather than explicit from the text. We formalize implied entailment as an extension of the NLI task and introduce the Implied NLI dataset (INLI) to help today's LLMs both recognize a broader variety of implied entailments and to distinguish between implicit and explicit entailment. We show how LLMs fine-tuned on INLI understand implied entailment and can generalize this understanding across datasets and domains.


GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning

arXiv.org Artificial Intelligence

Large language models have shown impressive results for multi-hop mathematical reasoning when the input question is only textual. Many mathematical reasoning problems, however, contain both text and image. With the ever-increasing adoption of vision language models (VLMs), understanding their reasoning abilities for such problems is crucial. In this paper, we evaluate the reasoning capabilities of VLMs along various axes through the lens of geometry problems. We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes, thus enabling a systematic evaluation. The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry (and, by generalization, other topics requiring similar reasoning) as suggested by previous benchmarks. This is made especially clear by the construction of our benchmark at various depth levels, since solving higher-depth problems requires long chains of reasoning rather than additional memorized knowledge. We release the dataset for further research in this area.


Mitigating Bias in Online Microfinance Platforms: A Case Study on Kiva.org

arXiv.org Machine Learning

Over the last couple of decades in the lending industry, financial disintermediation has occurred on a global scale. Traditionally, even for small supply of funds, banks would act as the conduit between the funds and the borrowers. It has now been possible to overcome some of the obstacles associated with such supply of funds with the advent of online platforms like Kiva, Prosper, LendingClub. Kiva for example, works with Micro Finance Institutions (MFIs) in developing countries to build Internet profiles of borrowers with a brief biography, loan requested, loan term, and purpose. Kiva, in particular, allows lenders to fund projects in different sectors through group or individual funding. Traditional research studies have investigated various factors behind lender preferences purely from the perspective of loan attributes and only until recently have some cross-country cultural preferences been investigated. In this paper, we investigate lender perceptions of economic factors of the borrower countries in relation to their preferences towards loans associated with different sectors. We find that the influence from economic factors and loan attributes can have substantially different roles to play for different sectors in achieving faster funding. We formally investigate and quantify the hidden biases prevalent in different loan sectors using recent tools from causal inference and regression models that rely on Bayesian variable selection methods. We then extend these models to incorporate fairness constraints based on our empirical analysis and find that such models can still achieve near comparable results with respect to baseline regression models.


Early Identification of Pathogenic Social Media Accounts

arXiv.org Artificial Intelligence

Pathogenic Social Media (PSM) accounts such as terrorist supporters exploit large communities of supporters for conducting attacks on social media. Early detection of these accounts is crucial as they are high likely to be key users in making a harmful message "viral". In this paper, we make the first attempt on utilizing causal inference to identify PSMs within a short time frame around their activity. We propose a time-decay causality metric and incorporate it into a causal community detection-based algorithm. The proposed algorithm is applied to groups of accounts sharing similar causality features and is followed by a classification algorithm to classify accounts as PSM or not. Unlike existing techniques that take significant time to collect information such as network, cascade path, or content, our scheme relies solely on action log of users. Results on a real-world dataset from Twitter demonstrate effectiveness and efficiency of our approach. We achieved precision of 0.84 for detecting PSMs only based on their first 10 days of activity; the misclassified accounts were then detected 10 days later.


A Non-Parametric Learning Approach to Identify Online Human Trafficking

arXiv.org Machine Learning

Human trafficking is among the most challenging law enforcement problems which demands persistent fight against from all over the globe. In this study, we leverage readily available data from the website "Backpage"-- used for classified advertisement-- to discern potential patterns of human trafficking activities which manifest online and identify most likely trafficking related advertisements. Due to the lack of ground truth, we rely on two human analysts --one human trafficking victim survivor and one from law enforcement, for hand-labeling the small portion of the crawled data. We then present a semi-supervised learning approach that is trained on the available labeled and unlabeled data and evaluated on unseen data with further verification of experts.