Aluísio, Sandra Maria
A Large Dataset of Spontaneous Speech with the Accent Spoken in S\~ao Paulo for Automatic Speech Recognition Evaluation
Lima, Rodrigo, Leal, Sidney Evaldo, Junior, Arnaldo Candido, Aluísio, Sandra Maria
We present a freely available spontaneous speech corpus for the Brazilian Portuguese language and report preliminary automatic speech recognition (ASR) results, using both the Wav2Vec2-XLSR-53 and Distil-Whisper models fine-tuned and trained on our corpus. The NURC-SP Audio Corpus comprises 401 different speakers (204 females, 197 males) with a total of 239.30 hours of transcribed audio recordings. To the best of our knowledge, this is the first large Paulistano accented spontaneous speech corpus dedicated to the ASR task in Portuguese. We first present the design and development procedures of the NURC-SP Audio Corpus, and then describe four ASR experiments in detail. The experiments demonstrated promising results for the applicability of the corpus for ASR. Specifically, we fine-tuned two versions of Wav2Vec2-XLSR-53 model, trained a Distil-Whisper model using our dataset with labels determined by Whisper Large-V3 model, and fine-tuned this Distil-Whisper model with our corpus. Our best results were the Distil-Whisper fine-tuned over NURC-SP Audio Corpus with a WER of 24.22% followed by a fine-tuned versions of Wav2Vec2-XLSR-53 model with a WER of 33.73%, that is almost 10% point worse than Distil-Whisper's. To enable experiment reproducibility, we share the NURC-SP Audio Corpus dataset, pre-trained models, and training recipes in Hugging-Face and Github repositories.
Evaluating OpenAI's Whisper ASR for Punctuation Prediction and Topic Modeling of life histories of the Museum of the Person
Gris, Lucas Rafael Stefanel, Marcacini, Ricardo, Junior, Arnaldo Candido, Casanova, Edresson, Soares, Anderson, Aluísio, Sandra Maria
Automatic speech recognition (ASR) systems play a key role in applications involving human-machine interactions. Despite their importance, ASR models for the Portuguese language proposed in the last decade have limitations in relation to the correct identification of punctuation marks in automatic transcriptions, which hinder the use of transcriptions by other systems, models, and even by humans. However, recently Whisper ASR was proposed by OpenAI, a general-purpose speech recognition model that has generated great expectations in dealing with such limitations. This chapter presents the first study on the performance of Whisper for punctuation prediction in the Portuguese language. We present an experimental evaluation considering both theoretical aspects involving pausing points (comma) and complete ideas (exclamation, question, and fullstop), as well as practical aspects involving transcript-based topic modeling - an application dependent on punctuation marks for promising performance. We analyzed experimental results from videos of Museum of the Person, a virtual museum that aims to tell and preserve people's life histories, thus discussing the pros and cons of Whisper in a real-world scenario. Although our experiments indicate that Whisper achieves state-of-the-art results, we conclude that some punctuation marks require improvements, such as exclamation, semicolon and colon.
Interpretability Analysis of Deep Models for COVID-19 Detection
da Silva, Daniel Peixoto Pinto, Casanova, Edresson, Gris, Lucas Rafael Stefanel, Junior, Arnaldo Candido, Finger, Marcelo, Svartman, Flaviane, Raposo, Beatriz, Martins, Marcus Vinícius Moreira, Aluísio, Sandra Maria, Berti, Larissa Cristina, Teixeira, João Paulo
During the outbreak of COVID-19 pandemic, several research areas joined efforts to mitigate the damages caused by SARS-CoV-2. In this paper we present an interpretability analysis of a convolutional neural network based model for COVID-19 detection in audios. We investigate which features are important for model decision process, investigating spectrograms, F0, F0 standard deviation, sex and age. Following, we analyse model decisions by generating heat maps for the trained models to capture their attention during the decision process. Focusing on a explainable Inteligence Artificial approach, we show that studied models can taken unbiased decisions even in the presence of spurious data in the training set, given the adequate preprocessing steps. Our best model has 94.44% of accuracy in detection, with results indicating that models favors spectrograms for the decision process, particularly, high energy areas in the spectrogram related to prosodic domains, while F0 also leads to efficient COVID-19 detection.