Alterovitz, Ron
Safe Start Regions for Medical Steerable Needle Automation
Hoelscher, Janine, Fried, Inbar, Tsalikis, Spiros, Akulian, Jason, Webster, Robert J. III, Alterovitz, Ron
Steerable needles are minimally invasive devices that enable novel medical procedures by following curved paths to avoid critical anatomical obstacles. Planning algorithms can be used to find a steerable needle motion plan to a target. Deployment typically consists of a physician manually inserting the steerable needle into tissue at the motion plan's start pose and handing off control to a robot, which then autonomously steers it to the target along the plan. The handoff between human and robot is critical for procedure success, as even small deviations from the start pose change the steerable needle's workspace and there is no guarantee that the target will still be reachable. We introduce a metric that evaluates the robustness to such start pose deviations. When measuring this robustness to deviations, we consider the tradeoff between being robust to changes in position versus changes in orientation. We evaluate our metric through simulation in an abstract, a liver, and a lung planning scenario. Our evaluation shows that our metric can be combined with different motion planners and that it efficiently determines large, safe start regions.
A Dataset of Anatomical Environments for Medical Robots: Modeling Respiratory Deformation
Fried, Inbar, Hoelscher, Janine, Akulian, Jason A., Alterovitz, Ron
Anatomical models of a medical robot's environment can significantly help guide design and development of a new robotic system. These models can be used for benchmarking motion planning algorithms, evaluating controllers, optimizing mechanical design choices, simulating procedures, and even as resources for data generation. Currently, the time-consuming task of generating these environments is repeatedly performed by individual research groups and rarely shared broadly. This not only leads to redundant efforts, but also makes it challenging to compare systems and algorithms accurately. In this work, we present a collection of clinically-relevant anatomical environments for medical robots operating in the lungs. Since anatomical deformation is a fundamental challenge for medical robots operating in the lungs, we describe a way to model respiratory deformation in these environments using patient-derived data. We share the environments and deformation data publicly by adding them to the Medical Robotics Anatomical Dataset (Med-RAD), our public dataset of anatomical environments for medical robots.
Autonomous Medical Needle Steering In Vivo
Kuntz, Alan, Emerson, Maxwell, Ertop, Tayfun Efe, Fried, Inbar, Fu, Mengyu, Hoelscher, Janine, Rox, Margaret, Akulian, Jason, Gillaspie, Erin A., Lee, Yueh Z., Maldonado, Fabien, Webster, Robert J. III, Alterovitz, Ron
The use of needles to access sites within organs is fundamental to many interventional medical procedures both for diagnosis and treatment. Safe and accurate navigation of a needle through living tissue to an intra-tissue target is currently often challenging or infeasible due to the presence of anatomical obstacles in the tissue, high levels of uncertainty, and natural tissue motion (e.g., due to breathing). Medical robots capable of automating needle-based procedures in vivo have the potential to overcome these challenges and enable an enhanced level of patient care and safety. In this paper, we show the first medical robot that autonomously navigates a needle inside living tissue around anatomical obstacles to an intra-tissue target. Our system leverages an aiming device and a laser-patterned highly flexible steerable needle, a type of needle capable of maneuvering along curvilinear trajectories to avoid obstacles. The autonomous robot accounts for anatomical obstacles and uncertainty in living tissue/needle interaction with replanning and control and accounts for respiratory motion by defining safe insertion time windows during the breathing cycle. We apply the system to lung biopsy, which is critical in the diagnosis of lung cancer, the leading cause of cancer-related death in the United States. We demonstrate successful performance of our system in multiple in vivo porcine studies and also demonstrate that our approach leveraging autonomous needle steering outperforms a standard manual clinical technique for lung nodule access.
Enabling Robots to Understand Incomplete Natural Language Instructions Using Commonsense Reasoning
Chen, Haonan, Tan, Hao, Kuntz, Alan, Bansal, Mohit, Alterovitz, Ron
Enabling robots to understand instructions provided via spoken natural language would facilitate interaction between robots and people in a variety of settings in homes and workplaces. However, natural language instructions are often missing information that would be obvious to a human based on environmental context and common sense, and hence does not need to be explicitly stated. In this paper, we introduce Language-Model-based Commonsense Reasoning (LMCR), a new method which enables a robot to listen to a natural language instruction from a human, observe the environment around it, and automatically fill in information missing from the instruction using environmental context and a new commonsense reasoning approach. Our approach first converts an instruction provided as unconstrained natural language into a form that a robot can understand by parsing it into verb frames. Our approach then fills in missing information in the instruction by observing objects in its vicinity and leveraging commonsense reasoning. To learn commonsense reasoning automatically, our approach distills knowledge from large unstructured textual corpora by training a language model. Our results show the feasibility of a robot learning commonsense knowledge automatically from web-based textual corpora, and the power of learned commonsense reasoning models in enabling a robot to autonomously perform tasks based on incomplete natural language instructions.
Robot Planning in the Real World: Research Challenges and Opportunities
Alterovitz, Ron (University of North Carolina at Chapel Hill) | Koenig, Sven (University of Southern California) | Likhachev, Maxim (Carnegie Mellon University)
Recent years have seen significant technical progress on robot planning, enabling robots to compute actions and motions to accomplish challenging tasks involving driving, flying, walking, or manipulating objects. However, robots that have been commercially deployed in the real world typically have no or minimal planning capability. Although these robots are highly successful in their respective niches, a lack of planning capabilities limits the range of tasks for which currently deployed robots can be used. In this article, we highlight key conclusions from a workshop sponsored by the National Science Foundation in October 2013 that summarize opportunities and key challenges in robot planning and include challenge problems identified in the workshop that can help guide future research towards making robot planning more deployable in the real world.
Robot Planning in the Real World: Research Challenges and Opportunities
Alterovitz, Ron (University of North Carolina at Chapel Hill) | Koenig, Sven (University of Southern California) | Likhachev, Maxim (Carnegie Mellon University)
Recent years have seen significant technical progress on robot planning, enabling robots to compute actions and motions to accomplish challenging tasks involving driving, flying, walking, or manipulating objects. However, robots that have been commercially deployed in the real world typically have no or minimal planning capability. These robots are often manually programmed, teleoperated, or programmed to follow simple rules. Although these robots are highly successful in their respective niches, a lack of planning capabilities limits the range of tasks for which currently deployed robots can be used. In this article, we highlight key conclusions from a workshop sponsored by the National Science Foundation in October 2013 that summarize opportunities and key challenges in robot planning and include challenge problems identified in the workshop that can help guide future research towards making robot planning more deployable in the real world.
Efficient Approximate Value Iteration for Continuous Gaussian POMDPs
Berg, Jur van den (University of Utah) | Patil, Sachin (University of North Carolina at Chapel Hill) | Alterovitz, Ron (University of North Carolina at Chapel Hill)
We introduce a highly efficient method for solving continuous partially-observable Markov decision processes (POMDPs) in which beliefs can be modeled using Gaussian distributions over the state space. Our method enables fast solutions to sequential decision making under uncertainty for a variety of problems involving noisy or incomplete observations and stochastic actions. We present an efficient approach to compute locally-valid approximations to the value function over continuous spaces in time polynomial (O[n^4]) in the dimension n of the state space. To directly tackle the intractability of solving general POMDPs, we leverage the assumption that beliefs are Gaussian distributions over the state space, approximate the belief update using an extended Kalman filter (EKF), and represent the value function by a function that is quadratic in the mean and linear in the variance of the belief. Our approach iterates towards a linear control policy over the state space that is locally-optimal with respect to a user defined cost function, and is approximately valid in the vicinity of a nominal trajectory through belief space. We demonstrate the scalability and potential of our approach on problems inspired by robot navigation under uncertainty for state spaces of up to 128 dimensions.