Goto

Collaborating Authors

 Altarawneh, Enas


Predicting Evoked Emotions in Conversations

arXiv.org Artificial Intelligence

Understanding and predicting the emotional trajectory in multi-party multi-turn conversations is of great significance. Such information can be used, for example, to generate empathetic response in human-machine interaction or to inform models of pre-emptive toxicity detection. In this work, we introduce the novel problem of Predicting Emotions in Conversations (PEC) for the next turn (n+1), given combinations of textual and/or emotion input up to turn n. We systematically approach the problem by modeling three dimensions inherently connected to evoked emotions in dialogues, including (i) sequence modeling, (ii) self-dependency modeling, and (iii) recency modeling. These modeling dimensions are then incorporated into two deep neural network architectures, a sequence model and a graph convolutional network model. The former is designed to capture the sequence of utterances in a dialogue, while the latter captures the sequence of utterances and the network formation of multi-party dialogues. We perform a comprehensive empirical evaluation of the various proposed models for addressing the PEC problem. The results indicate (i) the importance of the self-dependency and recency model dimensions for the prediction task, (ii) the quality of simpler sequence models in short dialogues, (iii) the importance of the graph neural models in improving the predictions in long dialogues.


Conversation Derailment Forecasting with Graph Convolutional Networks

arXiv.org Artificial Intelligence

Online conversations are particularly susceptible to derailment, which can manifest itself in the form of toxic communication patterns like disrespectful comments or verbal abuse. Forecasting conversation derailment predicts signs of derailment in advance enabling proactive moderation of conversations. Current state-of-the-art approaches to address this problem rely on sequence models that treat dialogues as text streams. We propose a novel model based on a graph convolutional neural network that considers dialogue user dynamics and the influence of public perception on conversation utterances. Through empirical evaluation, we show that our model effectively captures conversation dynamics and outperforms the state-of-the-art models on the CGA and CMV benchmark datasets by 1.5\% and 1.7\%, respectively.