Goto

Collaborating Authors

 Alshomary, Milad


Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers

arXiv.org Artificial Intelligence

We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.


"Is ChatGPT a Better Explainer than My Professor?": Evaluating the Explanation Capabilities of LLMs in Conversation Compared to a Human Baseline

arXiv.org Artificial Intelligence

Explanations form the foundation of knowledge sharing and build upon communication principles, social dynamics, and learning theories. We focus specifically on conversational approaches for explanations because the context is highly adaptive and interactive. Our research leverages previous work on explanatory acts, a framework for understanding the different strategies that explainers and explainees employ in a conversation to both explain, understand, and engage with the other party. We use the 5-Levels dataset was constructed from the WIRED YouTube series by Wachsmuth et al., and later annotated by Booshehri et al. with explanatory acts. These annotations provide a framework for understanding how explainers and explainees structure their response when crafting a response. With the rise of generative AI in the past year, we hope to better understand the capabilities of Large Language Models (LLMs) and how they can augment expert explainer's capabilities in conversational settings. To achieve this goal, the 5-Levels dataset (We use Booshehri et al.'s 2023 annotated dataset with explanatory acts.) allows us to audit the ability of LLMs in engaging in explanation dialogues. To evaluate the effectiveness of LLMs in generating explainer responses, we compared 3 different strategies, we asked human annotators to evaluate 3 different strategies: human explainer response, GPT4 standard response, GPT4 response with Explanation Moves.


Modeling the Quality of Dialogical Explanations

arXiv.org Artificial Intelligence

Explanations are pervasive in our lives. Mostly, they occur in dialogical form where an explainer discusses a concept or phenomenon of interest with an explainee. Leaving the explainee with a clear understanding is not straightforward due to the knowledge gap between the two participants. Previous research looked at the interaction of explanation moves, dialogue acts, and topics in successful dialogues with expert explainers. However, daily-life explanations often fail, raising the question of what makes a dialogue successful. In this work, we study explanation dialogues in terms of the interactions between the explainer and explainee and how they correlate with the quality of explanations in terms of a successful understanding on the explainee's side. In particular, we first construct a corpus of 399 dialogues from the Reddit forum Explain Like I am Five and annotate it for interaction flows and explanation quality. We then analyze the interaction flows, comparing them to those appearing in expert dialogues. Finally, we encode the interaction flows using two language models that can handle long inputs, and we provide empirical evidence for the effectiveness boost gained through the encoding in predicting the success of explanation dialogues.


The Touch\'e23-ValueEval Dataset for Identifying Human Values behind Arguments

arXiv.org Artificial Intelligence

We present the Touch\'e23-ValueEval Dataset for Identifying Human Values behind Arguments. To investigate approaches for the automated detection of human values behind arguments, we collected 9324 arguments from 6 diverse sources, covering religious texts, political discussions, free-text arguments, newspaper editorials, and online democracy platforms. Each argument was annotated by 3 crowdworkers for 54 values. The Touch\'e23-ValueEval dataset extends the Webis-ArgValues-22. In comparison to the previous dataset, the effectiveness of a 1-Baseline decreases, but that of an out-of-the-box BERT model increases. Therefore, though the classification difficulty increased as per the label distribution, the larger dataset allows for training better models.


Conclusion-based Counter-Argument Generation

arXiv.org Artificial Intelligence

In real-world debates, the most common way to counter an argument is to reason against its main point, that is, its conclusion. Existing work on the automatic generation of natural language counter-arguments does not address the relation to the conclusion, possibly because many arguments leave their conclusion implicit. In this paper, we hypothesize that the key to effective counter-argument generation is to explicitly model the argument's conclusion and to ensure that the stance of the generated counter is opposite to that conclusion. In particular, we propose a multitask approach that jointly learns to generate both the conclusion and the counter of an input argument. The approach employs a stance-based ranking component that selects the counter from a diverse set of generated candidates whose stance best opposes the generated conclusion. In both automatic and manual evaluation, we provide evidence that our approach generates more relevant and stance-adhering counters than strong baselines.