Goto

Collaborating Authors

 Almashor, Mahathir


Blockchain-based Federated Learning with Secure Aggregation in Trusted Execution Environment for Internet-of-Things

arXiv.org Artificial Intelligence

This paper proposes a blockchain-based Federated Learning (FL) framework with Intel Software Guard Extension (SGX)-based Trusted Execution Environment (TEE) to securely aggregate local models in Industrial Internet-of-Things (IIoTs). In FL, local models can be tampered with by attackers. Hence, a global model generated from the tampered local models can be erroneous. Therefore, the proposed framework leverages a blockchain network for secure model aggregation. Each blockchain node hosts an SGX-enabled processor that securely performs the FL-based aggregation tasks to generate a global model. Blockchain nodes can verify the authenticity of the aggregated model, run a blockchain consensus mechanism to ensure the integrity of the model, and add it to the distributed ledger for tamper-proof storage. Each cluster can obtain the aggregated model from the blockchain and verify its integrity before using it. We conducted several experiments with different CNN models and datasets to evaluate the performance of the proposed framework.


PhishClone: Measuring the Efficacy of Cloning Evasion Attacks

arXiv.org Artificial Intelligence

Web-based phishing accounts for over 90% of data breaches, and most web-browsers and security vendors rely on machine-learning (ML) models as mitigation. Despite this, links posted regularly on anti-phishing aggregators such as PhishTank and VirusTotal are shown to easily bypass existing detectors. Prior art suggests that automated website cloning, with light mutations, is gaining traction with attackers. This has limited exposure in current literature and leads to sub-optimal ML-based countermeasures. The work herein conducts the first empirical study that compiles and evaluates a variety of state-of-the-art cloning techniques in wide circulation. We collected 13,394 samples and found 8,566 confirmed phishing pages targeting 4 popular websites using 7 distinct cloning mechanisms. These samples were replicated with malicious code removed within a controlled platform fortified with precautions that prevent accidental access. We then reported our sites to VirusTotal and other platforms, with regular polling of results for 7 days, to ascertain the efficacy of each cloning technique. Results show that no security vendor detected our clones, proving the urgent need for more effective detectors. Finally, we posit 4 recommendations to aid web developers and ML-based defences to alleviate the risks of cloning attacks.