Almakky, Ibrahim
Rethinking Weight-Averaged Model-merging
Wang, Hu, Ma, Congbo, Almakky, Ibrahim, Reid, Ian, Carneiro, Gustavo, Yaqub, Mohammad
Weight-averaged model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without fine-tuning or retraining. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to provide deeper insights into how and why weight-averaged model-merging works: (1) we examine the intrinsic patterns captured by the learning of the model weights, through the visualizations of their patterns on several datasets, showing that these weights often encode structured and interpretable patterns; (2) we investigate model ensemble merging strategies based on averaging on weights versus averaging on features, providing detailed analyses across diverse architectures and datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. Our findings shed light on the "black box" of weight-averaged model-merging, offering valuable insights and practical recommendations that advance the model-merging process.
FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis
Sanjeev, Santosh, Zhaksylyk, Nuren, Almakky, Ibrahim, Hashmi, Anees Ur Rehman, Qazi, Mohammad Areeb, Yaqub, Mohammad
The scarcity of well-annotated medical datasets requires leveraging transfer learning from broader datasets like ImageNet or pre-trained models like CLIP. Model soups averages multiple fine-tuned models aiming to improve performance on In-Domain (ID) tasks and enhance robustness against Out-of-Distribution (OOD) datasets. However, applying these methods to the medical imaging domain faces challenges and results in suboptimal performance. This is primarily due to differences in error surface characteristics that stem from data complexities such as heterogeneity, domain shift, class imbalance, and distributional shifts between training and testing phases. To address this issue, we propose a hierarchical merging approach that involves local and global aggregation of models at various levels based on models' hyperparameter configurations. Furthermore, to alleviate the need for training a large number of models in the hyperparameter search, we introduce a computationally efficient method using a cyclical learning rate scheduler to produce multiple models for aggregation in the weight space. Our method demonstrates significant improvements over the model souping approach across multiple datasets (around 6% gain in HAM10000 and CheXpert datasets) while maintaining low computational costs for model generation and selection. Moreover, we achieve better results on OOD datasets than model soups.
PECon: Contrastive Pretraining to Enhance Feature Alignment between CT and EHR Data for Improved Pulmonary Embolism Diagnosis
Sanjeev, Santosh, Khatib, Salwa K. Al, Shaaban, Mai A., Almakky, Ibrahim, Papineni, Vijay Ram, Yaqub, Mohammad
Previous deep learning efforts have focused on improving the performance of Pulmonary Embolism (PE) diagnosis from Computed Tomography (CT) scans using Convolutional Neural Networks (CNN). However, the features from CT scans alone are not always sufficient for the diagnosis of PE. CT scans along with electronic heath records (EHR) can provide a better insight into the patient's condition and can lead to more accurate PE diagnosis. In this paper, we propose Pulmonary Embolism Detection using Contrastive Learning (PECon), a supervised contrastive pretraining strategy that employs both the patient's CT scans as well as the EHR data, aiming to enhance the alignment of feature representations between the two modalities and leverage information to improve the PE diagnosis. In order to achieve this, we make use of the class labels and pull the sample features of the same class together, while pushing away those of the other class. Results show that the proposed work outperforms the existing techniques and achieves state-of-the-art performance on the Rad-Fusion dataset with an F1-score of 0.913, accuracy of 0.90 and an AU-ROC of 0.943. Furthermore, we also explore the explainability of our approach in comparison to other methods.
FedSIS: Federated Split Learning with Intermediate Representation Sampling for Privacy-preserving Generalized Face Presentation Attack Detection
Alkhunaizi, Naif, Srivatsan, Koushik, Almalik, Faris, Almakky, Ibrahim, Nandakumar, Karthik
Lack of generalization to unseen domains/attacks is the Achilles heel of most face presentation attack detection (FacePAD) algorithms. Existing attempts to enhance the generalizability of FacePAD solutions assume that data from multiple source domains are available with a single entity to enable centralized training. In practice, data from different source domains may be collected by diverse entities, who are often unable to share their data due to legal and privacy constraints. While collaborative learning paradigms such as federated learning (FL) can overcome this problem, standard FL methods are ill-suited for domain generalization because they struggle to surmount the twin challenges of handling non-iid client data distributions during training and generalizing to unseen domains during inference. In this work, a novel framework called Federated Split learning with Intermediate representation Sampling (FedSIS) is introduced for privacy-preserving domain generalization. In FedSIS, a hybrid Vision Transformer (ViT) architecture is learned using a combination of FL and split learning to achieve robustness against statistical heterogeneity in the client data distributions without any sharing of raw data (thereby preserving privacy). To further improve generalization to unseen domains, a novel feature augmentation strategy called intermediate representation sampling is employed, and discriminative information from intermediate blocks of a ViT is distilled using a shared adapter network. The FedSIS approach has been evaluated on two well-known benchmarks for cross-domain FacePAD to demonstrate that it is possible to achieve state-of-the-art generalization performance without data sharing. Code: https://github.com/Naiftt/FedSIS
FUSQA: Fetal Ultrasound Segmentation Quality Assessment
Cengiz, Sevim, Almakky, Ibrahim, Yaqub, Mohammad
Deep learning models have been effective for various fetal ultrasound segmentation tasks. However, generalization to new unseen data has raised questions about their effectiveness for clinical adoption. Normally, a transition to new unseen data requires time-consuming and costly quality assurance processes to validate the segmentation performance post-transition. Segmentation quality assessment efforts have focused on natural images, where the problem has been typically formulated as a dice score regression task. In this paper, we propose a simplified Fetal Ultrasound Segmentation Quality Assessment (FUSQA) model to tackle the segmentation quality assessment when no masks exist to compare with. We formulate the segmentation quality assessment process as an automated classification task to distinguish between good and poor-quality segmentation masks for more accurate gestational age estimation. We validate the performance of our proposed approach on two datasets we collect from two hospitals using different ultrasound machines. We compare different architectures, with our best-performing architecture achieving over 90% classification accuracy on distinguishing between good and poor-quality segmentation masks from an unseen dataset. Additionally, there was only a 1.45-day difference between the gestational age reported by doctors and estimated based on CRL measurements using well-segmented masks. On the other hand, this difference increased and reached up to 7.73 days when we calculated CRL from the poorly segmented masks. As a result, AI-based approaches can potentially aid fetal ultrasound segmentation quality assessment and might detect poor segmentation in real-time screening in the future.
Arabic Dysarthric Speech Recognition Using Adversarial and Signal-Based Augmentation
Baali, Massa, Almakky, Ibrahim, Shehata, Shady, Karray, Fakhri
Despite major advancements in Automatic Speech Recognition (ASR), the state-of-the-art ASR systems struggle to deal with impaired speech even with high-resource languages. In Arabic, this challenge gets amplified, with added complexities in collecting data from dysarthric speakers. In this paper, we aim to improve the performance of Arabic dysarthric automatic speech recognition through a multi-stage augmentation approach. To this effect, we first propose a signal-based approach to generate dysarthric Arabic speech from healthy Arabic speech by modifying its speed and tempo. We also propose a second stage Parallel Wave Generative (PWG) adversarial model that is trained on an English dysarthric dataset to capture language-independant dysarthric speech patterns and further augment the signal-adjusted speech samples. Furthermore, we propose a fine-tuning and text-correction strategies for Arabic Conformer at different dysarthric speech severity levels. Our fine-tuned Conformer achieved 18% Word Error Rate (WER) and 17.2% Character Error Rate (CER) on synthetically generated dysarthric speech from the Arabic commonvoice speech dataset. This shows significant WER improvement of 81.8% compared to the baseline model trained solely on healthy data. We perform further validation on real English dysarthric speech showing a WER improvement of 124% compared to the baseline trained only on healthy English LJSpeech dataset.