Goto

Collaborating Authors

 Allen, Joshua


Differentially Private Synthetic Data: Applied Evaluations and Enhancements

arXiv.org Artificial Intelligence

Machine learning practitioners frequently seek to leverage the most informative available data, without violating the data owner's privacy, when building predictive models. Differentially private data synthesis protects personal details from exposure, and allows for the training of differentially private machine learning models on privately generated datasets. But how can we effectively assess the efficacy of differentially private synthetic data? In this paper, we survey four differentially private generative adversarial networks for data synthesis. We evaluate each of them at scale on five standard tabular datasets, and in two applied industry scenarios. Our results suggest some synthesizers are more applicable for different privacy budgets, and we further demonstrate complicating domain-based tradeoffs in selecting an approach. We offer experimental learning on applied machine learning scenarios with private internal data to researchers and practioners alike. In addition, we propose QUAIL, an ensemble-based modeling approach to generating synthetic data. We examine QUAIL's tradeoffs, and note circumstances in which it outperforms baseline differentially private supervised learning models under the same budget constraint. Maintaining an individual's privacy is a major concern when collecting sensitive information from groups or organizations. A formalization of privacy, known as differential privacy, has become the gold standard with which to protect information from malicious agents (Dwork et al., TAMC 2008).


Comparing Population Means Under Local Differential Privacy: With Significance and Power

AAAI Conferences

A statistical hypothesis test determines whether a hypothesis should be rejected based on samples from populations. In particular, randomized controlled experiments (or A/B testing) that compare population means using, e.g., t-tests, have been widely deployed in technology companies to aid in making data-driven decisions. Samples used in these tests are collected from users and may contain sensitive information. Both the data collection and the testing process may compromise individuals’ privacy. In this paper, we study how to conduct hypothesis tests to compare population means while preserving privacy. We use the notation of local differential privacy (LDP), which has recently emerged as the main tool to ensure each individual’s privacy without the need of a trusted data collector. We propose LDP tests that inject noise into every user’s data in the samples before collecting them (so users do not need to trust the data collector), and draw conclusions with bounded type-I (significance level) and type-II errors (1 - power). Our approaches can be extended to the scenario where some users require LDP while some are willing to provide exact data. We report experimental results on real-world datasets to verify the effectiveness of our approaches.