Goto

Collaborating Authors

 Ali, Mohsin


An Explainable Machine Learning Approach for Age and Gender Estimation in Living Individuals Using Dental Biometrics

arXiv.org Artificial Intelligence

Objectives: Age and gender estimation is crucial for various applications, including forensic investigations and anthropological studies. This research aims to develop a predictive system for age and gender estimation in living individuals, leveraging dental measurements such as Coronal Height (CH), Coronal Pulp Cavity Height (CPCH), and Tooth Coronal Index (TCI). Methods: Machine learning models were employed in our study, including Cat Boost Classifier (Catboost), Gradient Boosting Machine (GBM), Ada Boost Classifier (AdaBoost), Random Forest (RF), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGB), and Extra Trees Classifier (ETC), to analyze dental data from 862 living individuals (459 males and 403 females). Specifically, periapical radiographs from six teeth per individual were utilized, including premolars and molars from both maxillary and mandibular. A novel ensemble learning technique was developed, which uses multiple models each tailored to distinct dental metrics, to estimate age and gender accurately. Furthermore, an explainable AI model has been created utilizing SHAP, enabling dental experts to make judicious decisions based on comprehensible insight. Results: The RF and XGB models were particularly effective, yielding the highest F1 score for age and gender estimation. Notably, the XGB model showed a slightly better performance in age estimation, achieving an F1 score of 73.26%. A similar trend for the RF model was also observed in gender estimation, achieving a F1 score of 77.53%. Conclusions: This study marks a significant advancement in dental forensic methods, showcasing the potential of machine learning to automate age and gender estimation processes with improved accuracy.


CONFLATOR: Incorporating Switching Point based Rotatory Positional Encodings for Code-Mixed Language Modeling

arXiv.org Artificial Intelligence

The mixing of two or more languages is called Code-Mixing (CM). CM is a social norm in multilingual societies. Neural Language Models (NLMs) like transformers have been effective on many NLP tasks. However, NLM for CM is an under-explored area. Though transformers are capable and powerful, they cannot always encode positional information since they are non-recurrent. Therefore, to enrich word information and incorporate positional information, positional encoding is defined. We hypothesize that Switching Points (SPs), i.e., junctions in the text where the language switches (L1 -> L2 or L2 -> L1), pose a challenge for CM Language Models (LMs), and hence give special emphasis to SPs in the modeling process. We experiment with several positional encoding mechanisms and show that rotatory positional encodings along with switching point information yield the best results. We introduce CONFLATOR: a neural language modeling approach for code-mixed languages. CONFLATOR tries to learn to emphasize switching points using smarter positional encoding, both at unigram and bigram levels. CONFLATOR outperforms the state-of-the-art on two tasks based on code-mixed Hindi and English (Hinglish): (i) sentiment analysis and (ii) machine translation.


PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

arXiv.org Artificial Intelligence

NLP applications for code-mixed (CM) or mix-lingual text have gained a significant momentum recently, the main reason being the prevalence of language mixing in social media communications in multi-lingual societies like India, Mexico, Europe, parts of USA etc. Word embeddings are basic build-ing blocks of any NLP system today, yet, word embedding for CM languages is an unexplored territory. The major bottleneck for CM word embeddings is switching points, where the language switches. These locations lack in contextually and statistical systems fail to model this phenomena due to high variance in the seen examples. In this paper we present our initial observations on applying switching point based positional encoding techniques for CM language, specifically Hinglish (Hindi - English). Results are only marginally better than SOTA, but it is evident that positional encoding could bean effective way to train position sensitive language models for CM text.


A Survey of Uncertainty in Deep Neural Networks

arXiv.org Machine Learning

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.


Deep Learning Meets SAR

arXiv.org Machine Learning

Deep learning in remote sensing has become an international hype, but it is mostly limited to the evaluation of optical data. Although deep learning has been introduced in SAR data processing, despite successful first attempts, its huge potential remains locked. For example, to the best knowledge of the authors, there is no single example of deep learning in SAR that has been developed up to operational processing of big data or integrated into the production chain of any satellite mission. In this paper, we provide an introduction to the most relevant deep learning models and concepts, point out possible pitfalls by analyzing special characteristics of SAR data, review the state-of-the-art of deep learning applied to SAR in depth, summarize available benchmarks, and recommend some important future research directions. With this effort, we hope to stimulate more research in this interesting yet under-exploited research field.