Alfina, Ika
Cross-lingual Transfer Learning for Javanese Dependency Parsing
Ghiffari, Fadli Aulawi Al, Alfina, Ika, Azizah, Kurniawati
While structure learning achieves remarkable performance in high-resource languages, the situation differs for under-represented languages due to the scarcity of annotated data. This study focuses on assessing the efficacy of transfer learning in enhancing dependency parsing for Javanese, a language spoken by 80 million individuals but characterized by limited representation in natural language processing. We utilized the Universal Dependencies dataset consisting of dependency treebanks from more than 100 languages, including Javanese. We propose two learning strategies to train the model: transfer learning (TL) and hierarchical transfer learning (HTL). While TL only uses a source language to pre-train the model, the HTL method uses a source language and an intermediate language in the learning process. The results show that our best model uses the HTL method, which improves performance with an increase of 10% for both UAS and LAS evaluations compared to the baseline model.
NusaCrowd: Open Source Initiative for Indonesian NLP Resources
Cahyawijaya, Samuel, Lovenia, Holy, Aji, Alham Fikri, Winata, Genta Indra, Wilie, Bryan, Mahendra, Rahmad, Wibisono, Christian, Romadhony, Ade, Vincentio, Karissa, Koto, Fajri, Santoso, Jennifer, Moeljadi, David, Wirawan, Cahya, Hudi, Frederikus, Parmonangan, Ivan Halim, Alfina, Ika, Wicaksono, Muhammad Satrio, Putra, Ilham Firdausi, Rahmadani, Samsul, Oenang, Yulianti, Septiandri, Ali Akbar, Jaya, James, Dhole, Kaustubh D., Suryani, Arie Ardiyanti, Putri, Rifki Afina, Su, Dan, Stevens, Keith, Nityasya, Made Nindyatama, Adilazuarda, Muhammad Farid, Ignatius, Ryan, Diandaru, Ryandito, Yu, Tiezheng, Ghifari, Vito, Dai, Wenliang, Xu, Yan, Damapuspita, Dyah, Tho, Cuk, Karo, Ichwanul Muslim Karo, Fatyanosa, Tirana Noor, Ji, Ziwei, Fung, Pascale, Neubig, Graham, Baldwin, Timothy, Ruder, Sebastian, Sujaini, Herry, Sakti, Sakriani, Purwarianti, Ayu
We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.