Goto

Collaborating Authors

 Alexander Shekhovtsov


Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization

Neural Information Processing Systems

We consider the problem of jointly inferring the M-best diverse labelings for a binary (high-order) submodular energy of a graphical model. Recently, it was shown that this problem can be solved to a global optimum, for many practically interesting diversity measures. It was noted that the labelings are, so-called, nested. This nestedness property also holds for labelings of a class of parametric submodular minimization problems, where different values of the global parameter γ give rise to different solutions. The popular example of the parametric submodular minimization is the monotonic parametric max-flow problem, which is also widely used for computing multiple labelings.