Albuquerque, Tomé
CountPath: Automating Fragment Counting in Digital Pathology
Vieira, Ana Beatriz, Valente, Maria, Montezuma, Diana, Albuquerque, Tomé, Ribeiro, Liliana, Oliveira, Domingos, Monteiro, João, Gonçalves, Sofia, Pinto, Isabel M., Cardoso, Jaime S., Oliveira, Arlindo L.
Quality control of medical images is a critical component of digital pathology, ensuring that diagnostic images meet required standards. A pre-analytical task within this process is the verification of the number of specimen fragments, a process that ensures that the number of fragments on a slide matches the number documented in the macroscopic report. This step is important to ensure that the slides contain the appropriate diagnostic material from the grossing process, thereby guaranteeing the accuracy of subsequent microscopic examination and diagnosis. Traditionally, this assessment is performed manually, requiring significant time and effort while being subject to significant variability due to its subjective nature. To address these challenges, this study explores an automated approach to fragment counting using the YOLOv9 and Vision Transformer models. Our results demonstrate that the automated system achieves a level of performance comparable to expert assessments, offering a reliable and efficient alternative to manual counting. Additionally, we present findings on interobserver variability, showing that the automated approach achieves an accuracy of 86%, which falls within the range of variation observed among experts (82-88%), further supporting its potential for integration into routine pathology workflows.
Unimodal Distributions for Ordinal Regression
Cardoso, Jaime S., Cruz, Ricardo, Albuquerque, Tomé
In many real-world prediction tasks, class labels contain information about the relative order between labels that are not captured by commonly used loss functions such as multicategory cross-entropy. Recently, the preference for unimodal distributions in the output space has been incorporated into models and loss functions to account for such ordering information. However, current approaches rely on heuristics that lack a theoretical foundation. Here, we propose two new approaches to incorporate the preference for unimodal distributions into the predictive model. We analyse the set of unimodal distributions in the probability simplex and establish fundamental properties. We then propose a new architecture that imposes unimodal distributions and a new loss term that relies on the notion of projection in a set to promote unimodality. Experiments show the new architecture achieves top-2 performance, while the proposed new loss term is very competitive while maintaining high unimodality.