Goto

Collaborating Authors

 Alanov, Aibek


CLEAR: Character Unlearning in Textual and Visual Modalities

arXiv.org Artificial Intelligence

Machine Unlearning (MU) is critical for enhancing privacy and security in deep learning models, particularly in large multimodal language models (MLLMs), by removing specific private or hazardous information. While MU has made significant progress in textual and visual modalities, multimodal unlearning (MMU) remains significantly underexplored, partially due to the absence of a suitable open-source benchmark. To address this, we introduce CLEAR, a new benchmark designed to evaluate MMU methods. CLEAR contains 200 fictitious individuals and 3,700 images linked with corresponding question-answer pairs, enabling a thorough evaluation across modalities. We assess 10 MU methods, adapting them for MMU, and highlight new challenges specific to multimodal forgetting. The dataset is available at https://huggingface.co/datasets/therem/CLEAR


Group and Shuffle: Efficient Structured Orthogonal Parametrization

arXiv.org Artificial Intelligence

The increasing size of neural networks has led to a growing demand for methods of efficient fine-tuning. Recently, an orthogonal fine-tuning paradigm was introduced that uses orthogonal matrices for adapting the weights of a pretrained model. In this paper, we introduce a new class of structured matrices, which unifies and generalizes structured classes from previous works. We examine properties of this class and build a structured orthogonal parametrization upon it. We then use this parametrization to modify the orthogonal fine-tuning framework, improving parameter and computational efficiency. We empirically validate our method on different domains, including adapting of text-to-image diffusion models and downstream task fine-tuning in language modeling. Additionally, we adapt our construction for orthogonal convolutions and conduct experiments with 1-Lipschitz neural networks.


HiFi++: a Unified Framework for Bandwidth Extension and Speech Enhancement

arXiv.org Artificial Intelligence

Generative adversarial networks have recently demonstrated outstanding performance in neural vocoding outperforming best autoregressive and flow-based models. In this paper, we show that this success can be extended to other tasks of conditional audio generation. In particular, building upon HiFi vocoders, we propose a novel HiFi++ general framework for bandwidth extension and speech enhancement. We show that with the improved generator architecture, HiFi++ performs better or comparably with the state-of-the-art in these tasks while spending significantly less computational resources. The effectiveness of our approach is validated through a series of extensive experiments.


Iterative autoregression: a novel trick to improve your low-latency speech enhancement model

arXiv.org Artificial Intelligence

Streaming models are an essential component of real-time speech enhancement tools. The streaming regime constrains speech enhancement models to use only a tiny context of future information. As a result, the low-latency streaming setup is generally considered a challenging task and has a significant negative impact on the model's quality. However, the sequential nature of streaming generation offers a natural possibility for autoregression, that is, utilizing previous predictions while making current ones. The conventional method for training autoregressive models is teacher forcing, but its primary drawback lies in the training-inference mismatch that can lead to a substantial degradation in quality. In this study, we propose a straightforward yet effective alternative technique for training autoregressive low-latency speech enhancement models. We demonstrate that the proposed approach leads to stable improvement across diverse architectures and training scenarios.


Star-Shaped Denoising Diffusion Probabilistic Models

arXiv.org Machine Learning

Denoising Diffusion Probabilistic Models (DDPMs) provide the foundation for the recent breakthroughs in generative modeling. Their Markovian structure makes it difficult to define DDPMs with distributions other than Gaussian or discrete. In this paper, we introduce Star-Shaped DDPM (SS-DDPM). Its star-shaped diffusion process allows us to bypass the need to define the transition probabilities or compute posteriors. We establish duality between star-shaped and specific Markovian diffusions for the exponential family of distributions and derive efficient algorithms for training and sampling from SS-DDPMs. In the case of Gaussian distributions, SS-DDPM is equivalent to DDPM. However, SS-DDPMs provide a simple recipe for designing diffusion models with distributions such as Beta, von Mises$\unicode{x2013}$Fisher, Dirichlet, Wishart and others, which can be especially useful when data lies on a constrained manifold. We evaluate the model in different settings and find it competitive even on image data, where Beta SS-DDPM achieves results comparable to a Gaussian DDPM. Our implementation is available at https://github.com/andrey-okhotin/star-shaped .


StyleDomain: Efficient and Lightweight Parameterizations of StyleGAN for One-shot and Few-shot Domain Adaptation

arXiv.org Artificial Intelligence

Domain adaptation of GANs is a problem of fine-tuning GAN models pretrained on a large dataset (e.g. StyleGAN) to a specific domain with few samples (e.g. painting faces, sketches, etc.). While there are many methods that tackle this problem in different ways, there are still many important questions that remain unanswered. In this paper, we provide a systematic and in-depth analysis of the domain adaptation problem of GANs, focusing on the StyleGAN model. We perform a detailed exploration of the most important parts of StyleGAN that are responsible for adapting the generator to a new domain depending on the similarity between the source and target domains. As a result of this study, we propose new efficient and lightweight parameterizations of StyleGAN for domain adaptation. Particularly, we show that there exist directions in StyleSpace (StyleDomain directions) that are sufficient for adapting to similar domains. For dissimilar domains, we propose Affine+ and AffineLight+ parameterizations that allows us to outperform existing baselines in few-shot adaptation while having significantly less training parameters. Finally, we examine StyleDomain directions and discover their many surprising properties that we apply for domain mixing and cross-domain image morphing. Source code can be found at https://github.com/AIRI-Institute/StyleDomain.


On Scaled Methods for Saddle Point Problems

arXiv.org Artificial Intelligence

Methods with adaptive scaling of different features play a key role in solving saddle point problems, primarily due to Adam's popularity for solving adversarial machine learning problems, including GANS training. This paper carries out a theoretical analysis of the following scaling techniques for solving SPPs: the well-known Adam and RmsProp scaling and the newer AdaHessian and OASIS based on Hutchison approximation. We use the Extra Gradient and its improved version with negative momentum as the basic method. Experimental studies on GANs show good applicability not only for Adam, but also for other less popular methods.


User-Controllable Multi-Texture Synthesis with Generative Adversarial Networks

arXiv.org Machine Learning

We propose a novel multi-texture synthesis model based on generative adversarial networks (GANs) with a user-controllable mechanism. The user control ability allows to explicitly specify the texture which should be generated by the model. This property follows from using an encoder part which learns a latent representation for each texture from the dataset. To ensure a dataset coverage, we use an adversarial loss function that penalizes for incorrect reproductions of a given texture. In experiments, we show that our model can learn descriptive texture manifolds for large datasets and from raw data such as a collection of high-resolution photos. Moreover, we apply our method to produce 3D textures and show that it outperforms existing baselines.


Pairwise Augmented GANs with Adversarial Reconstruction Loss

arXiv.org Machine Learning

We propose a novel autoencoding model called Pairwise Augmented GANs. We train a generator and an encoder jointly and in an adversarial manner. The generator network learns to sample realistic objects. In turn, the encoder network at the same time is trained to map the true data distribution to the prior in latent space. To ensure good reconstructions, we introduce an augmented adversarial reconstruction loss. Here we train a discriminator to distinguish two types of pairs: an object with its augmentation and the one with its reconstruction. We show that such adversarial loss compares objects based on the content rather than on the exact match. We experimentally demonstrate that our model generates samples and reconstructions of quality competitive with state-of-the-art on datasets MNIST, CIFAR10, CelebA and achieves good quantitative results on CIFAR10.