Goto

Collaborating Authors

 Alam, Ridwan


Detecting QT prolongation From a Single-lead ECG With Deep Learning

arXiv.org Artificial Intelligence

For a number of antiarrhythmics, drug loading requires a 3 day hospitalization with monitoring for QT prolongation. Automated QT monitoring with wearable ECG monitors would facilitate out-of-hospital care. We develop a deep learning model that infers QT intervals from ECG lead-I - the lead most often acquired from ambulatory ECG monitors - and to use this model to detect clinically meaningful QT-prolongation episodes during Dofetilide drug loading. Using 4.22 million 12-lead ECG recordings from 903.6 thousand patients at the Massachusetts General Hospital, we develop a deep learning model, QTNet, that infers QT intervals from lead-I. Over 3 million ECGs from 653 thousand patients are used to train the model and an internal-test set containing 633 thousand ECGs from 135 thousand patients was used for testing. QTNet is further evaluated on an external-validation set containing 3.1 million ECGs from 667 thousand patients at another institution. QTNet was used to detect Dofetilide-induced QT prolongation in a publicly available database (ECGRDVQ-dataset) containing ECGs from subjects enrolled in a clinical trial evaluating the effects of antiarrhythmic drugs. QTNet achieves mean absolute errors of 12.63ms (internal-test) and 12.30ms (external-validation) for estimating absolute QT intervals. The associated Pearson correlation coefficients are 0.91 (internal-test) and 0.92 (external-validation). For the ECGRDVQ-dataset, QTNet detects Dofetilide-induced QTc prolongation with 87% sensitivity and 77% specificity. The negative predictive value of the model is greater than 95% when the pre-test probability of drug-induced QTc prolongation is below 25%. Drug-induced QT prolongation risk can be tracked from ECG lead-I using deep learning.


Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) for clinical time series data has received significant attention in recent literature, since these data are highly rich and provide important information about a patient's physiological state. However, most existing SSL methods for clinical time series are limited in that they are designed for unimodal time series, such as a sequence of structured features (e.g., lab values and vitals signs) or an individual high-dimensional physiological signal (e.g., an electrocardiogram). These existing methods cannot be readily extended to model time series that exhibit multimodality, with structured features and high-dimensional data being recorded at each timestep in the sequence. In this work, we address this gap and propose a new SSL method -- Sequential Multi-Dimensional SSL -- where a SSL loss is applied both at the level of the entire sequence and at the level of the individual high-dimensional data points in the sequence in order to better capture information at both scales. Our strategy is agnostic to the specific form of loss function used at each level -- it can be contrastive, as in SimCLR, or non-contrastive, as in VICReg. We evaluate our method on two real-world clinical datasets, where the time series contains sequences of (1) high-frequency electrocardiograms and (2) structured data from lab values and vitals signs. Our experimental results indicate that pre-training with our method and then fine-tuning on downstream tasks improves performance over baselines on both datasets, and in several settings, can lead to improvements across different self-supervised loss functions.


Wearable Respiration Monitoring: Interpretable Inference with Context and Sensor Biomarkers

arXiv.org Artificial Intelligence

Breathing rate (BR), minute ventilation (VE), and other respiratory parameters are essential for real-time patient monitoring in many acute health conditions, such as asthma. The clinical standard for measuring respiration, namely Spirometry, is hardly suitable for continuous use. Wearables can track many physiological signals, like ECG and motion, yet not respiration. Deriving respiration from other modalities has become an area of active research. In this work, we infer respiratory parameters from wearable ECG and wrist motion signals. We propose a modular and generalizable classification-regression pipeline to utilize available context information, such as physical activity, in learning context-conditioned inference models. Morphological and power domain novel features from the wearable ECG are extracted to use with these models. Exploratory feature selection methods are incorporated in this pipeline to discover application-specific interpretable biomarkers. Using data from 15 subjects, we evaluate two implementations of the proposed pipeline: for inferring BR and VE. Each implementation compares generalized linear model, random forest, support vector machine, Gaussian process regression, and neighborhood component analysis as contextual regression models. Permutation, regularization, and relevance determination methods are used to rank the ECG features to identify robust ECG biomarkers across models and activities. This work demonstrates the potential of wearable sensors not only in continuous monitoring, but also in designing biomarker-driven preventive measures.