Alam, Nahid
Maya: An Instruction Finetuned Multilingual Multimodal Model
Alam, Nahid, Kanjula, Karthik Reddy, Guthikonda, Surya, Chung, Timothy, Vegesna, Bala Krishna S, Das, Abhipsha, Susevski, Anthony, Chan, Ryan Sze-Yin, Uddin, S M Iftekhar, Islam, Shayekh Bin, Santhosh, Roshan, A, Snegha, Sharma, Drishti, Liu, Chen, Chaturvedi, Isha, Winata, Genta Indra, S, Ashvanth., Mukherjee, Snehanshu, Aji, Alham Fikri
The rapid development of large Vision-Language Models (VLMs) has led to impressive results on academic benchmarks, primarily in widely spoken languages. However, significant gaps remain in the ability of current VLMs to handle low-resource languages and varied cultural contexts, largely due to a lack of high-quality, diverse, and safety-vetted data. Consequently, these models often struggle to understand low-resource languages and cultural nuances in a manner free from toxicity. To address these limitations, we introduce Maya, an open-source Multimodal Multilingual model. Our contributions are threefold: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; 2) a thorough analysis of toxicity within the LLaVA dataset, followed by the creation of a novel toxicity-free version across eight languages; and 3) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
Embedding Geometries of Contrastive Language-Image Pre-Training
Chou, Jason Chuan-Chih, Alam, Nahid
Since the publication of CLIP, the approach of using InfoNCE loss for contrastive pre-training has become widely popular for bridging two or more modalities. Despite its wide adoption, CLIP's original design choices of L2 normalization and cosine similarity logit have rarely been revisited. We have systematically experimented with alternative geometries and softmax logits for language-image pre-training and identified that variants with intuitive Euclidean geometry, Euclidean CLIP (EuCLIP), match or exceed the performance of CLIP and support hierarchical relationships at least as well as more complicated hyperbolic alternative.
Vision Transformers for Mobile Applications: A Short Survey
Alam, Nahid, Kolawole, Steven, Sethi, Simardeep, Bansali, Nishant, Nguyen, Karina
Vision Transformers (ViTs) have demonstrated state-of-the-art performance on many Computer Vision Tasks. Unfortunately, deploying these large-scale ViTs is resource-consuming and impossible for many mobile devices. While most in the community are building for larger and larger ViTs, we ask a completely opposite question: How small can a ViT be within the tradeoffs of accuracy and inference latency that make it suitable for mobile deployment? We look into a few ViTs specifically designed for mobile applications and observe that they modify the transformer's architecture or are built around the combination of CNN and transformer. Recent work has also attempted to create sparse ViT networks and proposed alternatives to the attention module. In this paper, we study these architectures, identify the challenges and analyze what really makes a vision transformer suitable for mobile applications. We aim to serve as a baseline for future research direction and hopefully lay the foundation to choose the exemplary vision transformer architecture for your application running on mobile devices.