Goto

Collaborating Authors

 Alaiz-Moretón, Héctor


Middleware-based multi-agent development environment for building and testing distributed intelligent systems

arXiv.org Artificial Intelligence

The spread of the Internet of Things (IoT) is demanding new, powerful architectures for handling the huge amounts of data produced by the IoT devices. In many scenarios, many existing isolated solutions applied to IoT devices use a set of rules to detect, report and mitigate malware activities or threats. This paper describes a development environment that allows the programming and debugging of such rule-based multi-agent solutions. The solution consists of the integration of a rule engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and testing purposes, and a mechanism for the incremental composition of behaviors. Finally, a set of examples and a comparative study were accomplished to test the suitability and validity of the approach. The JADE multi-agent middleware has been used for the practical implementation of the approach.


Enriched multi-agent middleware for building rule-based distributed security solutions for IoT environments

arXiv.org Artificial Intelligence

The increasing number of connected devices and the complexity of Internet of Things (IoT) ecosystems are demanding new architectures for managing and securing these networked environments. Intrusion Detection Systems (IDS) are security solutions that help to detect and mitigate the threats that IoT systems face, but there is a need for new IDS strategies and architectures. This paper describes a development environment that allows the programming and debugging of distributed, rule-based multi-agent IDS solutions. The proposed solution consists in the integration of a rule engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and debugging purposes, and a mechanism for the incremental composition of behaviors. A comparative study and an example IDS are used to test and show the suitability and validity of the approach. The JADE multi-agent middleware has been used for the practical implementations.


Clustering Techniques Selection for a Hybrid Regression Model: A Case Study Based on a Solar Thermal System

arXiv.org Artificial Intelligence

This work addresses the performance comparison between four clustering techniques with the objective of achieving strong hybrid models in supervised learning tasks. A real dataset from a bio-climatic house named Sotavento placed on experimental wind farm and located in Xermade (Lugo) in Galicia (Spain) has been collected. Authors have chosen the thermal solar generation system in order to study how works applying several cluster methods followed by a regression technique to predict the output temperature of the system. With the objective of defining the quality of each clustering method two possible solutions have been implemented. The first one is based on three unsupervised learning metrics (Silhouette, Calinski-Harabasz and Davies-Bouldin) while the second one, employs the most common error measurements for a regression algorithm such as Multi Layer Perceptron.


Survival and grade of the glioma prediction using transfer learning

arXiv.org Artificial Intelligence

Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3 to 6 months without treatment. Detecting and predicting its survival and grade accurately are crucial. This study introduces a novel approach using transfer learning techniques. Various pre-trained networks, including EfficientNet, ResNet, VGG16, and Inception, were tested through exhaustive optimization to identify the most suitable architecture. Transfer learning was applied to fine-tune these models on a glioblastoma image dataset, aiming to achieve two objectives: survival and tumor grade prediction.The experimental results show 65% accuracy in survival prediction, classifying patients into short, medium, or long survival categories. Additionally, the prediction of tumor grade achieved an accuracy of 97%, accurately differentiating low-grade gliomas (LGG) and high-grade gliomas (HGG). The success of the approach is attributed to the effectiveness of transfer learning, surpassing the current state-of-the-art methods. In conclusion, this study presents a promising method for predicting the survival and grade of glioblastoma. Transfer learning demonstrates its potential in enhancing prediction models, particularly in scenarios with limited large datasets. These findings hold promise for improving diagnostic and treatment approaches for glioblastoma patients.


Diabetes detection using deep learning techniques with oversampling and feature augmentation

arXiv.org Artificial Intelligence

Background and objective: Diabetes is a chronic pathology which is affecting more and more people over the years. It gives rise to a large number of deaths each year. Furthermore, many people living with the disease do not realize the seriousness of their health status early enough. Late diagnosis brings about numerous health problems and a large number of deaths each year so the development of methods for the early diagnosis of this pathology is essential. Methods: In this paper, a pipeline based on deep learning techniques is proposed to predict diabetic people. It includes data augmentation using a variational autoencoder (VAE), feature augmentation using an sparse autoencoder (SAE) and a convolutional neural network for classification. Pima Indians Diabetes Database, which takes into account information on the patients such as the number of pregnancies, glucose or insulin level, blood pressure or age, has been evaluated. Results: A 92.31% of accuracy was obtained when CNN classifier is trained jointly the SAE for featuring augmentation over a well balanced dataset. This means an increment of 3.17% of accuracy with respect the state-of-the-art. Conclusions: Using a full deep learning pipeline for data preprocessing and classification has demonstrate to be very promising in the diabetes detection field outperforming the state-of-the-art proposals.


Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network

arXiv.org Artificial Intelligence

After the dataset collection stage, the preprocessing challenge, because of its numerous applications, such as audio surveillance, stage, and the NLP step, the classification process is carried out using E-learning, clinical studies, lie detection, entertainment, computer Bayesian Neural Networks. In the case of [6], the main purpose is to games and call centers [1]. Emotion processing is also important develop an application capable of analyzing the content of online for polarity detection which is very useful in social events, political courses and the contributions of their learners such as video transcriptions, movements and marketing campaigns [2]. Emotions play an important readings, questions and answers of the evaluation activities, posts role in our life, not only in human interaction, but also in decisionmaking in forums, etc. using NLP, to improve the teaching material and the processes, and in the perception of the world around us [3].