Alain, Guillaume
Introducing Milabench: Benchmarking Accelerators for AI
Delaunay, Pierre, Bouthillier, Xavier, Breuleux, Olivier, Ortiz-Gagné, Satya, Bilaniuk, Olexa, Normandin, Fabrice, Bergeron, Arnaud, Carrez, Bruno, Alain, Guillaume, Blanc, Soline, Osterrath, Frédéric, Viviano, Joseph, Patil, Roger Creus-Castanyer Darshan, Awal, Rabiul, Zhang, Le
AI workloads, particularly those driven by deep learning, are introducing novel usage patterns to high-performance computing (HPC) systems that are not comprehensively captured by standard HPC benchmarks. As one of the largest academic research centers dedicated to deep learning, Mila identified the need to develop a custom benchmarking suite to address the diverse requirements of its community, which consists of over 1,000 researchers. This report introduces Milabench, the resulting benchmarking suite. Its design was informed by an extensive literature review encompassing 867 papers, as well as surveys conducted with Mila researchers. This rigorous process led to the selection of 26 primary benchmarks tailored for procurement evaluations, alongside 16 optional benchmarks for in-depth analysis. We detail the design methodology, the structure of the benchmarking suite, and provide performance evaluations using GPUs from NVIDIA, AMD, and Intel. The Milabench suite is open source and can be accessed at github.com/milaiqia/milabench.
DeepDrummer : Generating Drum Loops using Deep Learning and a Human in the Loop
Alain, Guillaume, Chevalier-Boisvert, Maxime, Osterrath, Frederic, Piche-Taillefer, Remi
DeepDrummer is a drum loop generation tool that uses active learning to learn the preferences (or current artistic intentions) of a human user from a small number of interactions. The principal goal of this tool is to enable an efficient exploration of new musical ideas. We train a deep neural network classifier on audio data and show how it can be used as the core component of a system that generates drum loops based on few prior beliefs as to how these loops should be structured. We aim to build a system that can converge to meaningful results even with a limited number of interactions with the user. This property enables our method to be used from a cold start situation (no pre-existing dataset), or starting from a collection of audio samples provided by the user. In a proof of concept study with 25 participants, we empirically demonstrate that DeepDrummer is able to converge towards the preference of our subjects after a small number of interactions.
Negative eigenvalues of the Hessian in deep neural networks
Alain, Guillaume, Roux, Nicolas Le, Manzagol, Pierre-Antoine
The loss function of deep networks is known to be non-convex but the precise nature of this nonconvexity is still an active area of research. In this work, we study the loss landscape of deep networks through the eigendecompositions of their Hessian matrix. In particular, we examine how important the negative eigenvalues are and the benefits one can observe in handling them appropriately.
Understanding intermediate layers using linear classifier probes
Alain, Guillaume, Bengio, Yoshua
Neural network models have a reputation for being black boxes. We propose to monitor the features at every layer of a model and measure how suitable they are for classification. We use linear classifiers, which we refer to as "probes", trained entirely independently of the model itself. This helps us better understand the roles and dynamics of the intermediate layers. We demonstrate how this can be used to develop a better intuition about models and to diagnose potential problems. We apply this technique to the popular models Inception v3 and Resnet-50. Among other things, we observe experimentally that the linear separability of features increase monotonically along the depth of the model.
Variance Reduction in SGD by Distributed Importance Sampling
Alain, Guillaume, Lamb, Alex, Sankar, Chinnadhurai, Courville, Aaron, Bengio, Yoshua
Humans are able to accelerate their learning by selecting training materials that are the most informative and at the appropriate level of difficulty. We propose a framework for distributing deep learning in which one set of workers search for the most informative examples in parallel while a single worker updates the model on examples selected by importance sampling. This leads the model to update using an unbiased estimate of the gradient which also has minimum variance when the sampling proposal is proportional to the L2-norm of the gradient. We show experimentally that this method reduces gradient variance even in a context where the cost of synchronization across machines cannot be ignored, and where the factors for importance sampling are not updated instantly across the training set.
Techniques for Learning Binary Stochastic Feedforward Neural Networks
Raiko, Tapani, Berglund, Mathias, Alain, Guillaume, Dinh, Laurent
Stochastic binary hidden units in a multi-layer perceptron (MLP) network give at least three potential benefits when compared to deterministic MLP networks. (1) They allow to learn one-to-many type of mappings. (2) They can be used in structured prediction problems, where modeling the internal structure of the output is important. (3) Stochasticity has been shown to be an excellent regularizer, which makes generalization performance potentially better in general. However, training stochastic networks is considerably more difficult. We study training using M samples of hidden activations per input. We show that the case M=1 leads to a fundamentally different behavior where the network tries to avoid stochasticity. We propose two new estimators for the training gradient and propose benchmark tests for comparing training algorithms. Our experiments confirm that training stochastic networks is difficult and show that the proposed two estimators perform favorably among all the five known estimators.
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Alain, Guillaume, Bengio, Yoshua
What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of data. This paper clarifies some of these previous observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes the shape of the data generating density. We show that the auto-encoder captures the score (derivative of the log-density with respect to the input). It contradicts previous interpretations of reconstruction error as an energy function. Unlike previous results, the theorems provided here are completely generic and do not depend on the parametrization of the auto-encoder: they show what the auto-encoder would tend to if given enough capacity and examples. These results are for a contractive training criterion we show to be similar to the denoising auto-encoder training criterion with small corruption noise, but with contraction applied on the whole reconstruction function rather than just encoder. Similarly to score matching, one can consider the proposed training criterion as a convenient alternative to maximum likelihood because it does not involve a partition function. Finally, we show how an approximate Metropolis-Hastings MCMC can be setup to recover samples from the estimated distribution, and this is confirmed in sampling experiments.
Generalized Denoising Auto-Encoders as Generative Models
Bengio, Yoshua, Yao, Li, Alain, Guillaume, Vincent, Pascal
Recent work has shown how denoising and contractive autoencoders implicitly capture the structure of the data generating density, in the case where the corruption noise is Gaussian, the reconstruction error is the squared error, and the data is continuous-valued. This has led to various proposals for sampling from this implicitly learned density function, using Langevin and Metropolis-Hastings MCMC. However, it remained unclear how to connect the training procedure of regularized auto-encoders to the implicit estimation of the underlying data generating distribution when the data are discrete, or using other forms of corruption process and reconstruction errors. Another issue is the mathematical justification which is only valid in the limit of small corruption noise. We propose here a different attack on the problem, which deals with all these issues: arbitrary (but noisy enough) corruption, arbitrary reconstruction loss (seen as a log-likelihood), handling both discrete and continuous-valued variables, and removing the bias due to non-infinitesimal corruption noise (or non-infinitesimal contractive penalty).
Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders
Bengio, Yoshua, Alain, Guillaume, Rifai, Salah
Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of the unknown data generating density. This paper contributes to the mathematical understanding of this phenomenon and helps define better justified sampling algorithms for deep learning based on auto-encoder variants. We consider an MCMC where each step samples from a Gaussian whose mean and covariance matrix depend on the previous state, defines through its asymptotic distribution a target density. First, we show that good choices (in the sense of consistency) for these mean and covariance functions are the local expected value and local covariance under that target density. Then we show that an auto-encoder with a contractive penalty captures estimators of these local moments in its reconstruction function and its Jacobian. A contribution of this work is thus a novel alternative to maximum-likelihood density estimation, which we call local moment matching. It also justifies a recently proposed sampling algorithm for the Contractive Auto-Encoder and extends it to the Denoising Auto-Encoder.