Goto

Collaborating Authors

 Akrami, Haleh


Generalizable Representation Learning for fMRI-based Neurological Disorder Identification

arXiv.org Artificial Intelligence

Despite the impressive advancements achieved using deep-learning for functional brain activity analysis, the heterogeneity of functional patterns and scarcity of imaging data still pose challenges in tasks such as identifying neurological disorders. For functional Magnetic Resonance Imaging (fMRI), while data may be abundantly available from healthy controls, clinical data is often scarce, especially for rare diseases, limiting the ability of models to identify clinically-relevant features. We overcome this limitation by introducing a novel representation learning strategy integrating meta-learning with self-supervised learning to improve the generalization from normal to clinical features. This approach enables generalization to challenging clinical tasks featuring scarce training data. We achieve this by leveraging self-supervised learning on the control dataset to focus on inherent features that are not limited to a particular supervised task and incorporating meta-learning to improve the generalization across domains. To explore the generalizability of the learned representations to unseen clinical applications, we apply the model to four distinct clinical datasets featuring scarce and heterogeneous data for neurological disorder classification. Results demonstrate the superiority of our representation learning strategy on diverse clinically-relevant tasks.


Meta Transfer of Self-Supervised Knowledge: Foundation Model in Action for Post-Traumatic Epilepsy Prediction

arXiv.org Artificial Intelligence

Despite the impressive advancements achieved using deep-learning for functional brain activity analysis, the heterogeneity of functional patterns and scarcity of imaging data still pose challenges in tasks such as prediction of future onset of Post-Traumatic Epilepsy (PTE) from data acquired shortly after traumatic brain injury (TBI). Foundation models pre-trained on separate large-scale datasets can improve the performance from scarce and heterogeneous datasets. For functional Magnetic Resonance Imaging (fMRI), while data may be abundantly available from healthy controls, clinical data is often scarce, limiting the ability of foundation models to identify clinically-relevant features. We overcome this limitation by introducing a novel training strategy for our foundation model by integrating meta-learning with self-supervised learning to improve the generalization from normal to clinical features. In this way we enable generalization to other downstream clinical tasks, in our case prediction of PTE. To achieve this, we perform self-supervised training on the control dataset to focus on inherent features that are not limited to a particular supervised task while applying meta-learning, which strongly improves the model's generalizability using bi-level optimization. Through experiments on neurological disorder classification tasks, we demonstrate that the proposed strategy significantly improves task performance on small-scale clinical datasets. To explore the generalizability of the foundation model in downstream applications, we then apply the model to an unseen TBI dataset for prediction of PTE using zero-shot learning. Results further demonstrated the enhanced generalizability of our foundation model.


Learning A Disentangling Representation For PU Learning

arXiv.org Artificial Intelligence

In this paper, we address the problem of learning a binary (positive vs. negative) classifier given Positive and Unlabeled data commonly referred to as PU learning. Although rudimentary techniques like clustering, out-of-distribution detection, or positive density estimation can be used to solve the problem in low-dimensional settings, their efficacy progressively deteriorates with higher dimensions due to the increasing complexities in the data distribution. In this paper we propose to learn a neural network-based data representation using a loss function that can be used to project the unlabeled data into two (positive and negative) clusters that can be easily identified using simple clustering techniques, effectively emulating the phenomenon observed in low-dimensional settings. We adopt a vector quantization technique for the learned representations to amplify the separation between the learned unlabeled data clusters. We conduct experiments on simulated PU data that demonstrate the improved performance of our proposed method compared to the current state-of-the-art approaches. We also provide some theoretical justification for our two cluster-based approach and our algorithmic choices.


Beta quantile regression for robust estimation of uncertainty in the presence of outliers

arXiv.org Artificial Intelligence

Quantile Regression (QR) can be used to estimate aleatoric uncertainty in deep neural networks and can generate prediction intervals. Quantifying uncertainty is particularly important in critical applications such as clinical diagnosis, where a realistic assessment of uncertainty is essential in determining disease status and planning the appropriate treatment. The most common application of quantile regression models is in cases where the parametric likelihood cannot be specified. Although quantile regression is quite robust to outlier response observations, it can be sensitive to outlier covariate observations (features). Outlier features can compromise the performance of deep learning regression problems such as style translation, image reconstruction, and deep anomaly detection, potentially leading to misleading conclusions. To address this problem, we propose a robust solution for quantile regression that incorporates concepts from robust divergence. We compare the performance of our proposed method with (i) least trimmed quantile regression and (ii) robust regression based on the regularization of case-specific parameters in a simple real dataset in the presence of outlier. These methods have not been applied in a deep learning framework. We also demonstrate the applicability of the proposed method by applying it to a medical imaging translation task using diffusion models.


Toward Improved Generalization: Meta Transfer of Self-supervised Knowledge on Graphs

arXiv.org Artificial Intelligence

Despite the remarkable success achieved by graph convolutional networks for functional brain activity analysis, the heterogeneity of functional patterns and the scarcity of imaging data still pose challenges in many tasks. Transferring knowledge from a source domain with abundant training data to a target domain is effective for improving representation learning on scarce training data. However, traditional transfer learning methods often fail to generalize the pre-trained knowledge to the target task due to domain discrepancy. Self-supervised learning on graphs can increase the generalizability of graph features since self-supervision concentrates on inherent graph properties that are not limited to a particular supervised task. We propose a novel knowledge transfer strategy by integrating meta-learning with self-supervised learning to deal with the heterogeneity and scarcity of fMRI data. Specifically, we perform a self-supervised task on the source domain and apply meta-learning, which strongly improves the generalizability of the model using the bi-level optimization, to transfer the self-supervised knowledge to the target domain. Through experiments on a neurological disorder classification task, we demonstrate that the proposed strategy significantly improves target task performance by increasing the generalizability and transferability of graph-based knowledge.


Speech MOS multi-task learning and rater bias correction

arXiv.org Artificial Intelligence

Perceptual speech quality is an important performance metric for teleconferencing applications. The mean opinion score (MOS) is standardized for the perceptual evaluation of speech quality and is obtained by asking listeners to rate the quality of a speech sample. Recently, there has been increasing research interest in developing models for estimating MOS blindly. Here we propose a multi-task framework to include additional labels and data in training to improve the performance of a blind MOS estimation model. Experimental results indicate that the proposed model can be trained to jointly estimate MOS, reverberation time (T60), and clarity (C50) by combining two disjoint data sets in training, one containing only MOS labels and the other containing only T60 and C50 labels. Furthermore, we use a semi-supervised framework to combine two MOS data sets in training, one containing only MOS labels (per ITU-T Recommendation P.808), and the other containing separate scores for speech signal, background noise, and overall quality (per ITU-T Recommendation P.835). Finally, we present preliminary results for addressing individual rater bias in the MOS labels.


Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection

arXiv.org Machine Learning

Despite impressive state-of-the-art performance on a wide variety of machine learning tasks in multiple applications, deep learning methods can produce over-confident predictions, particularly with limited training data. Therefore, quantifying uncertainty is particularly important in critical applications such as anomaly or lesion detection and clinical diagnosis, where a realistic assessment of uncertainty is essential in determining surgical margins, disease status and appropriate treatment. In this work, we focus on using quantile regression to estimate aleatoric uncertainty and use it for estimating uncertainty in both supervised and unsupervised lesion detection problems. In the unsupervised settings, we apply quantile regression to a lesion detection task using Variational AutoEncoder (VAE). The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative VAE model, Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem by estimating conditional quantiles for the given input image. Using the estimated quantiles, we compute the conditional mean and variance for input images under the conditionally Gaussian model. We then compute reconstruction probability using this model as a principled approach to outlier or anomaly detection applications. In the supervised setting, we develop binary quantile regression (BQR) for the supervised lesion segmentation task. BQR segmentation can capture uncertainty in label boundaries. We show how quantile regression can be used to characterize expert disagreement in the location of lesion boundaries.


Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression

arXiv.org Artificial Intelligence

Estimation of uncertainty in deep learning models is of vital importance, especially in medical imaging, where reliance on inference without taking into account uncertainty could lead to misdiagnosis. Recently, the probabilistic Variational AutoEncoder (VAE) has become a popular model for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative approach that avoids this variance shrinkage problem by using quantile regression. Using estimated quantiles to compute mean and variance under the Gaussian assumption, we compute reconstruction probability as a principled approach to outlier or anomaly detection. Results on simulated and Fashion MNIST data demonstrate the effectiveness of our approach. We also show how our approach can be used for principled heterogeneous thresholding for lesion detection in brain images.


Robust Variational Autoencoder for Tabular Data with Beta Divergence

arXiv.org Machine Learning

We propose a robust variational autoencoder with $\beta$ divergence for tabular data (RTVAE) with mixed categorical and continuous features. Variational autoencoders (VAE) and their variations are popular frameworks for anomaly detection problems. The primary assumption is that we can learn representations for normal patterns via VAEs and any deviation from that can indicate anomalies. However, the training data itself can contain outliers. The source of outliers in training data include the data collection process itself (random noise) or a malicious attacker (data poisoning) who may target to degrade the performance of the machine learning model. In either case, these outliers can disproportionately affect the training process of VAEs and may lead to wrong conclusions about what the normal behavior is. In this work, we derive a novel form of a variational autoencoder for tabular data sets with categorical and continuous features that is robust to outliers in training data. Our results on the anomaly detection application for network traffic datasets demonstrate the effectiveness of our approach.


Robust Variational Autoencoder

arXiv.org Machine Learning

Machine learning methods often need a large amount of labeled training data. Since the training data is assumed to be the ground truth, outliers can severely degrade learned representations and performance of trained models. Here we apply concepts from robust statistics to derive a novel variational autoencoder that is robust to outliers in the training data. Variational autoencoders (VAEs) extract a lower dimensional encoded feature representation from which we can generate new data samples. Robustness of autoencoders to outliers is critical for generating a reliable representation of particular data types in the encoded space when using corrupted training data. Our robust VAE is based on beta-divergence rather than the standard Kullback-Leibler (KL) divergence. Our proposed model has the same computational complexity as the VAE, and contains a single tuning parameter to control the degree of robustness. We demonstrate performance of the beta-divergence based autoencoder for a range of image data types, showing improved robustness to outliers both qualitatively and quantitatively. We also illustrate the use of the robust VAE for outlier detection.