Goto

Collaborating Authors

 Akella, Aditya


Accelerating Distributed Deep Learning using Lossless Homomorphic Compression

arXiv.org Artificial Intelligence

As deep neural networks (DNNs) grow in complexity and size, the resultant increase in communication overhead during distributed training has become a significant bottleneck, challenging the scalability of distributed training systems. Existing solutions, while aiming to mitigate this bottleneck through worker-level compression and in-network aggregation, fall short due to their inability to efficiently reconcile the trade-offs between compression effectiveness and computational overhead, hindering overall performance and scalability. In this paper, we introduce a novel compression algorithm that effectively merges worker-level compression with in-network aggregation. Our solution is both homomorphic, allowing for efficient in-network aggregation without CPU/GPU processing, and lossless, ensuring no compromise on training accuracy. Theoretically optimal in compression and computational efficiency, our approach is empirically validated across diverse DNN models such as NCF, LSTM, VGG19, and BERT-base, showing up to a 6.33$\times$ improvement in aggregation throughput and a 3.74$\times$ increase in per-iteration training speed.


On a Foundation Model for Operating Systems

arXiv.org Artificial Intelligence

This paper lays down the research agenda for a domain-specific foundation model for operating systems (OSes). Our case for a foundation model revolves around the observations that several OS components such as CPU, memory, and network subsystems are interrelated and that OS traces offer the ideal dataset for a foundation model to grasp the intricacies of diverse OS components and their behavior in varying environments and workloads. We discuss a wide range of possibilities that then arise, from employing foundation models as policy agents to utilizing them as generators and predictors to assist traditional OS control algorithms. Our hope is that this paper spurs further research into OS foundation models and creating the next generation of operating systems for the evolving computing landscape.


MOSEL: Inference Serving Using Dynamic Modality Selection

arXiv.org Artificial Intelligence

Rapid advancements over the years have helped machine learning models reach previously hard-to-achieve goals, sometimes even exceeding human capabilities. However, to attain the desired accuracy, the model sizes and in turn their computational requirements have increased drastically. Thus, serving predictions from these models to meet any target latency and cost requirements of applications remains a key challenge, despite recent work in building inference-serving systems as well as algorithmic approaches that dynamically adapt models based on inputs. In this paper, we introduce a form of dynamism, modality selection, where we adaptively choose modalities from inference inputs while maintaining the model quality. We introduce MOSEL, an automated inference serving system for multi-modal ML models that carefully picks input modalities per request based on user-defined performance and accuracy requirements. MOSEL exploits modality configurations extensively, improving system throughput by 3.6$\times$ with an accuracy guarantee and shortening job completion times by 11$\times$.


Auxo: Efficient Federated Learning via Scalable Client Clustering

arXiv.org Artificial Intelligence

Federated learning (FL) is an emerging machine learning (ML) paradigm that enables heterogeneous edge devices to collaboratively train ML models without revealing their raw data to a logically centralized server. However, beyond the heterogeneous device capacity, FL participants often exhibit differences in their data distributions, which are not independent and identically distributed (Non-IID). Many existing works present point solutions to address issues like slow convergence, low final accuracy, and bias in FL, all stemming from client heterogeneity. In this paper, we explore an additional layer of complexity to mitigate such heterogeneity by grouping clients with statistically similar data distributions (cohorts). We propose Auxo to gradually identify such cohorts in large-scale, low-availability, and resource-constrained FL populations. Auxo then adaptively determines how to train cohort-specific models in order to achieve better model performance and ensure resource efficiency. Our extensive evaluations show that, by identifying cohorts with smaller heterogeneity and performing efficient cohort-based training, Auxo boosts various existing FL solutions in terms of final accuracy (2.1% - 8.2%), convergence time (up to 2.2x), and model bias (4.8% - 53.8%).


CASSINI: Network-Aware Job Scheduling in Machine Learning Clusters

arXiv.org Artificial Intelligence

We present CASSINI, a network-aware job scheduler for machine learning (ML) clusters. CASSINI introduces a novel geometric abstraction to consider the communication pattern of different jobs while placing them on network links. To do so, CASSINI uses an affinity graph that finds a series of time-shift values to adjust the communication phases of a subset of jobs, such that the communication patterns of jobs sharing the same network link are interleaved with each other. Experiments with 13 common ML models on a 24-server testbed demonstrate that compared to the state-of-the-art ML schedulers, CASSINI improves the average and tail completion time of jobs by up to 1.6x and 2.5x, respectively. Moreover, we show that CASSINI reduces the number of ECN marked packets in the cluster by up to 33x.


Impact of RoCE Congestion Control Policies on Distributed Training of DNNs

arXiv.org Artificial Intelligence

RDMA over Converged Ethernet (RoCE) has gained significant attraction for datacenter networks due to its compatibility with conventional Ethernet-based fabric. However, the RDMA protocol is efficient only on (nearly) lossless networks, emphasizing the vital role of congestion control on RoCE networks. Unfortunately, the native RoCE congestion control scheme, based on Priority Flow Control (PFC), suffers from many drawbacks such as unfairness, head-of-line-blocking, and deadlock. Therefore, in recent years many schemes have been proposed to provide additional congestion control for RoCE networks to minimize PFC drawbacks. However, these schemes are proposed for general datacenter environments. In contrast to the general datacenters that are built using commodity hardware and run general-purpose workloads, high-performance distributed training platforms deploy high-end accelerators and network components and exclusively run training workloads using collectives (All-Reduce, All-To-All) communication libraries for communication. Furthermore, these platforms usually have a private network, separating their communication traffic from the rest of the datacenter traffic. Scalable topology-aware collective algorithms are inherently designed to avoid incast patterns and balance traffic optimally. These distinct features necessitate revisiting previously proposed congestion control schemes for general-purpose datacenter environments. In this paper, we thoroughly analyze some of the SOTA RoCE congestion control schemes vs. PFC when running on distributed training platforms. Our results indicate that previously proposed RoCE congestion control schemes have little impact on the end-to-end performance of training workloads, motivating the necessity of designing an optimized, yet low-overhead, congestion control scheme based on the characteristics of distributed training platforms and workloads.


Accelerating Deep Learning Inference via Freezing

arXiv.org Machine Learning

Over the last few years, Deep Neural Networks (DNNs) have become ubiquitous owing to their high accuracy on real-world tasks. However, this increase in accuracy comes at the cost of computationally expensive models leading to higher prediction latencies. Prior efforts to reduce this latency such as quantization, model distillation, and any-time prediction models typically trade-off accuracy for performance. In this work, we observe that caching intermediate layer outputs can help us avoid running all the layers of a DNN for a sizeable fraction of inference requests. We find that this can potentially reduce the number of effective layers by half for 91.58% of CIFAR-10 requests run on ResNet-18. We present Freeze Inference, a system that introduces approximate caching at each intermediate layer and we discuss techniques to reduce the cache size and improve the cache hit rate. Finally, we discuss some of the open research challenges in realizing such a design.