Goto

Collaborating Authors

 Akbari, Mohammad


DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models

arXiv.org Artificial Intelligence

Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{https://github.com/vbdi/divprune}{\text{here}}$.


Drug-Target Interaction/Affinity Prediction: Deep Learning Models and Advances Review

arXiv.org Artificial Intelligence

Drug discovery remains a slow and expensive process that involves many steps, from detecting the target structure to obtaining approval from the Food and Drug Administration (FDA), and is often riddled with safety concerns. Accurate prediction of how drugs interact with their targets and the development of new drugs by using better methods and technologies have immense potential to speed up this process, ultimately leading to faster delivery of life-saving medications. Traditional methods used for drug-target interaction prediction show limitations, particularly in capturing complex relationships between drugs and their targets. As an outcome, deep learning models have been presented to overcome the challenges of interaction prediction through their precise and efficient end results. By outlining promising research avenues and models, each with a different solution but similar to the problem, this paper aims to give researchers a better idea of methods for even more accurate and efficient prediction of drug-target interaction, ultimately accelerating the development of more effective drugs. A total of 180 prediction methods for drug-target interactions were analyzed throughout the period spanning 2016 to 2025 using different frameworks based on machine learning, mainly deep learning and graph neural networks. Additionally, this paper discusses the novelty, architecture, and input representation of these models.


Task-Agnostic Language Model Watermarking via High Entropy Passthrough Layers

arXiv.org Artificial Intelligence

In the era of costly pre-training of large language models, ensuring the intellectual property rights of model owners, and insuring that said models are responsibly deployed, is becoming increasingly important. To this end, we propose model watermarking via passthrough layers, which are added to existing pre-trained networks and trained using a self-supervised loss such that the model produces high-entropy output when prompted with a unique private key, and acts normally otherwise. Unlike existing model watermarking methods, our method is fully task-agnostic, and can be applied to both classification and sequence-to-sequence tasks without requiring advanced access to downstream fine-tuning datasets. We evaluate the proposed passthrough layers on a wide range of downstream tasks, and show experimentally our watermarking method achieves a near-perfect watermark extraction accuracy and false-positive rate in most cases without damaging original model performance. Additionally, we show our method is robust to both downstream fine-tuning, fine-pruning, and layer removal attacks, and can be trained in a fraction of the time required to train the original model. Code is available in the paper.


GOLD: Generalized Knowledge Distillation via Out-of-Distribution-Guided Language Data Generation

arXiv.org Artificial Intelligence

Knowledge distillation from LLMs is essential for the efficient deployment of language models. Prior works have proposed data generation using LLMs for preparing distilled models. We argue that generating data with LLMs is prone to sampling mainly from the center of original content distribution. This limitation hinders the distilled model from learning the true underlying data distribution and to forget the tails of the distributions (samples with lower probability). To this end, we propose GOLD, a task-agnostic data generation and knowledge distillation framework, which employs an iterative out-of-distribution-guided feedback mechanism for the LLM. As a result, the generated data improves the generalizability of distilled models. An energy-based OOD evaluation approach is also introduced to deal with noisy generated data. Our extensive experiments on 10 different classification and sequence-to-sequence tasks in NLP show that GOLD respectively outperforms prior arts and the LLM with an average improvement of 5% and 14%. We will also show that the proposed method is applicable to less explored and novel tasks. The code is available.


EnrichEvent: Enriching Social Data with Contextual Information for Emerging Event Extraction

arXiv.org Artificial Intelligence

Social platforms have emerged as crucial platforms for disseminating information and discussing real-life social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. However, most existing approaches only exploit keyword burstiness or network structures to detect unspecified events. Thus, they often need help identifying unknown events regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, word sense ambiguation, irregular language, and variation in aspects of opinions. Moreover, extracting discriminative features and patterns for evolving events by exploiting the limited structural knowledge is almost infeasible. To address these challenges, in this paper, we propose a novel framework, namely EnrichEvent, that leverages the linguistic and contextual representations of streaming social data. In particular, we leverage contextual and linguistic knowledge to detect semantically related tweets and enhance the effectiveness of the event detection approaches. Eventually, our proposed framework produces cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating its high performance and effectiveness in detecting and distinguishing unspecified social events.


ArchBERT: Bi-Modal Understanding of Neural Architectures and Natural Languages

arXiv.org Artificial Intelligence

Building multi-modal language models has been a trend in the recent years, where additional modalities such as image, video, speech, etc. are jointly learned along with natural languages (i.e., textual information). Despite the success of these multi-modal language models with different modalities, there is no existing solution for neural network architectures and natural languages. Providing neural architectural information as a new modality allows us to provide fast architecture-2-text and text-2-architecture retrieval/generation services on the cloud with a single inference. Such solution is valuable in terms of helping beginner and intermediate ML users to come up with better neural architectures or AutoML approaches with a simple text query. In this paper, we propose ArchBERT, a bi-modal model for joint learning and understanding of neural architectures and natural languages, which opens up new avenues for research in this area. We also introduce a pre-training strategy named Masked Architecture Modeling (MAM) for a more generalized joint learning. Moreover, we introduce and publicly release two new bi-modal datasets for training and validating our methods. The ArchBERT's performance is verified through a set of numerical experiments on different downstream tasks such as architecture-oriented reasoning, question answering, and captioning (summarization). Datasets, codes, and demos are available supplementary materials.


A Persian Benchmark for Joint Intent Detection and Slot Filling

arXiv.org Artificial Intelligence

Natural Language Understanding (NLU) is important in today's technology as it enables machines to comprehend and process human language, leading to improved human-computer interactions and advancements in fields such as virtual assistants, chatbots, and language-based AI systems. This paper highlights the significance of advancing the field of NLU for low-resource languages. With intent detection and slot filling being crucial tasks in NLU, the widely used datasets ATIS and SNIPS have been utilized in the past. However, these datasets only cater to the English language and do not support other languages. In this work, we aim to address this gap by creating a Persian benchmark for joint intent detection and slot filling based on the ATIS dataset. To evaluate the effectiveness of our benchmark, we employ state-of-the-art methods for intent detection and slot filling.


EBJR: Energy-Based Joint Reasoning for Adaptive Inference

arXiv.org Artificial Intelligence

State-of-the-art deep learning models have achieved significant performance levels on various benchmarks. However, the excellent performance comes at a cost of inefficient computational cost. Light-weight architectures, on the other hand, achieve moderate accuracies, but at a much more desirable latency. This paper presents a new method of jointly using the large accurate models together with the small fast ones. To this end, we propose an Energy-Based Joint Reasoning (EBJR) framework that adaptively distributes the samples between shallow and deep models to achieve an accuracy close to the deep model, but latency close to the shallow one. Our method is applicable to out-of-the-box pre-trained models as it does not require an architecture change nor re-training. Moreover, it is easy to use and deploy, especially for cloud services. Through a comprehensive set of experiments on different down-stream tasks, we show that our method outperforms strong state-of-the-art approaches with a considerable margin. In addition, we propose specialized EBJR, an extension of our method where we create a smaller specialized side model that performs the target task only partially, but yields an even higher accuracy and faster inference. We verify the strengths of our methods with both theoretical and experimental evaluations.


Bagging Supervised Autoencoder Classifier for Credit Scoring

arXiv.org Machine Learning

Credit scoring models, which are among the most potent risk management tools that banks and financial institutes rely on, have been a popular subject for research in the past few decades. Accordingly, many approaches have been developed to address the challenges in classifying loan applicants and improve and facilitate decision-making. The imbalanced nature of credit scoring datasets, as well as the heterogeneous nature of features in credit scoring datasets, pose difficulties in developing and implementing effective credit scoring models, targeting the generalization power of classification models on unseen data. In this paper, we propose the Bagging Supervised Autoencoder Classifier (BSAC) that mainly leverages the superior performance of the Supervised Autoencoder, which learns low-dimensional embeddings of the input data exclusively with regards to the ultimate classification task of credit scoring, based on the principles of multi-task learning. BSAC also addresses the data imbalance problem by employing a variant of the Bagging process based on the undersampling of the majority class. The obtained results from our experiments on the benchmark and real-life credit scoring datasets illustrate the robustness and effectiveness of the Bagging Supervised Autoencoder Classifier in the classification of loan applicants that can be regarded as a positive development in credit scoring models.


MarlRank: Multi-agent Reinforced Learning to Rank

arXiv.org Machine Learning

When estimating the relevancy between a query and a document, ranking models largely neglect the mutual information among documents. A common wisdom is that if two documents are similar in terms of the same query, they are more likely to have similar relevance score. To mitigate this problem, in this paper, we propose a multi-agent reinforced ranking model, named MarlRank. In particular, by considering each document as an agent, we formulate the ranking process as a multi-agent Markov Decision Process (MDP), where the mutual interactions among documents are incorporated in the ranking process. To compute the ranking list, each document predicts its relevance to a query considering not only its own query-document features but also its similar documents features and actions. By defining reward as a function of NDCG, we can optimize our model directly on the ranking performance measure. Our experimental results on two LETOR benchmark datasets show that our model has significant performance gains over the state-of-art baselines. We also find that the NDCG shows an overall increasing trend along with the step of interactions, which demonstrates that the mutual information among documents helps improve the ranking performance.