Goto

Collaborating Authors

 Ajanović, Zlatan


A Multi-Heuristic Search-based Motion Planning for Automated Parking

arXiv.org Artificial Intelligence

In unstructured environments like parking lots or construction sites, due to the large search-space and kinodynamic constraints of the vehicle, it is challenging to achieve real-time planning. Several state-of-the-art planners utilize heuristic search-based algorithms. However, they heavily rely on the quality of the single heuristic function, used to guide the search. Therefore, they are not capable to achieve reasonable computational performance, resulting in unnecessary delays in the response of the vehicle. In this work, we are adopting a Multi-Heuristic Search approach, that enables the use of multiple heuristic functions and their individual advantages to capture different complexities of a given search space. Based on our knowledge, this approach was not used previously for this problem. For this purpose, multiple admissible and non-admissible heuristic functions are defined, the original Multi-Heuristic A* Search was extended for bidirectional use and dealing with hybrid continuous-discrete search space, and a mechanism for adapting scale of motion primitives is introduced. To demonstrate the advantage, the Multi-Heuristic A* algorithm is benchmarked against a very popular heuristic search-based algorithm, Hybrid A*. The Multi-Heuristic A* algorithm outperformed baseline in both terms, computation efficiency and motion plan (path) quality.


Robotic Packaging Optimization with Reinforcement Learning

arXiv.org Artificial Intelligence

Intelligent manufacturing is becoming increasingly important due to the growing demand for maximizing productivity and flexibility while minimizing waste and lead times. This work investigates automated secondary robotic food packaging solutions that transfer food products from the conveyor belt into containers. A major problem in these solutions is varying product supply which can cause drastic productivity drops. Conventional rule-based approaches, used to address this issue, are often inadequate, leading to violation of the industry's requirements. Reinforcement learning, on the other hand, has the potential of solving this problem by learning responsive and predictive policy, based on experience. However, it is challenging to utilize it in highly complex control schemes. In this paper, we propose a reinforcement learning framework, designed to optimize the conveyor belt speed while minimizing interference with the rest of the control system. When tested on real-world data, the framework exceeds the performance requirements (99.8% packed products) and maintains quality (100% filled boxes). Compared to the existing solution, our proposed framework improves productivity, has smoother control, and reduces computation time.


Search-Based Task and Motion Planning for Hybrid Systems: Agile Autonomous Vehicles

arXiv.org Artificial Intelligence

To achieve optimal robot behavior in dynamic scenarios we need to consider complex dynamics in a predictive manner. In the vehicle dynamics community, it is well know that to achieve time-optimal driving on low surface, the vehicle should utilize drifting. Hence many authors have devised rules to split circuits and employ drifting on some segments. These rules are suboptimal and do not generalize to arbitrary circuit shapes (e.g., S-like curves). So, the question "When to go into which mode and how to drive in it?" remains unanswered. To choose the suitable mode (discrete decision), the algorithm needs information about the feasibility of the continuous motion in that mode. This makes it a class of Task and Motion Planning (TAMP) problems, which are known to be hard to solve optimally in real-time. In the AI planning community, search methods are commonly used. However, they cannot be directly applied to TAMP problems due to the continuous component. Here, we present a search-based method that effectively solves this problem and efficiently searches in a highly dimensional state space with nonlinear and unstable dynamics. The space of the possible trajectories is explored by sampling different combinations of motion primitives guided by the search. Our approach allows to use multiple locally approximated models to generate motion primitives (e.g., learned models of drifting) and effectively simplify the problem without losing accuracy. The algorithm performance is evaluated in simulated driving on a mixed-track with segments of different curvatures (right and left). Our code is available at https://git.io/JenvB


Vision for Bosnia and Herzegovina in Artificial Intelligence Age: Global Trends, Potential Opportunities, Selected Use-cases and Realistic Goals

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) is one of the most promising technologies of the 21. century, with an already noticeable impact on society and the economy. With this work, we provide a short overview of global trends, applications in industry and selected use-cases from our international experience and work in industry and academia. The goal is to present global and regional positive practices and provide an informed opinion on the realistic goals and opportunities for positioning B&H on the global AI scene.