Aich, Michael
Conditional diffusion models for downscaling & bias correction of Earth system model precipitation
Aich, Michael, Hess, Philipp, Pan, Baoxiang, Bathiany, Sebastian, Huang, Yu, Boers, Niklas
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe losses of property and lives, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle with resolving small-scale dynamics and suffer from biases, especially for extreme events. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability over the output and suffer from unstable training. Here, we propose a novel machine learning framework for simultaneous bias correction and downscaling. We train a generative diffusion model in a supervised way purely on observational data. We map observational and ESM data to a shared embedding space, where both are unbiased towards each other and train a conditional diffusion model to reverse the mapping. Our method can be used to correct any ESM field, as the training is independent of the ESM. Our approach ensures statistical fidelity, preserves large-scale spatial patterns and outperforms existing methods especially regarding extreme events and small-scale spatial features that are crucial for impact assessments.
Fast, Scale-Adaptive, and Uncertainty-Aware Downscaling of Earth System Model Fields with Generative Foundation Models
Hess, Philipp, Aich, Michael, Pan, Baoxiang, Boers, Niklas
Accurate and high-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change, but are computationally too expensive. Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches. However, existing methods require computationally costly retraining for each ESM and extrapolate poorly to climates unseen during training. We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner. Our foundation model approach yields probabilistic downscaled fields at resolution only limited by the observational reference data. We show that the CM outperforms state-of-the-art diffusion models at a fraction of computational cost while maintaining high controllability on the downscaling task. Further, our method generalizes to climate states unseen during training without explicitly formulated physical constraints.