Ai, Yunfeng
Scenarios Engineering driven Autonomous Transportation in Open-Pit Mines
Teng, Siyu, Li, Xuan, Li, Yuchen, Li, Lingxi, Ai, Yunfeng, Chen, Long
One critical bottleneck that impedes the development and deployment of autonomous transportation in open-pit mines is guaranteed robustness and trustworthiness in prohibitively extreme scenarios. In this research, a novel scenarios engineering (SE) methodology for the autonomous mining truck is proposed for open-pit mines. SE increases the trustworthiness and robustness of autonomous trucks from four key components: Scenario Feature Extractor, Intelligence & Index (I&I), Calibration & Certification (C&C), and Verification & Validation (V&V). Scenario feature extractor is a comprehensive pipeline approach that captures complex interactions and latent dependencies in complex mining scenarios. I&I effectively enhances the quality of the training dataset, thereby establishing a solid foundation for autonomous transportation in mining areas. C&C is grounded in the intrinsic regulation, capabilities, and contributions of the intelligent systems employed in autonomous transportation to align with traffic participants in the real world and ensure their performance through certification. V&V process ensures that the autonomous transportation system can be correctly implemented, while validation focuses on evaluating the ability of the well-trained model to operate efficiently in the complex and dynamic conditions of the open-pit mines. This methodology addresses the unique challenges of autonomous transportation in open-pit mining, promoting productivity, safety, and performance in mining operations.
Scenario Engineering for Autonomous Transportation: A New Stage in Open-Pit Mines
Teng, Siyu, Li, Xuan, Li, Yucheng, Xuanyuan, Zhe, Ai, Yunfeng, Chen, Long
In recent years, open-pit mining has seen significant advancement, the cooperative operation of various specialized machinery substantially enhancing the efficiency of mineral extraction. However, the harsh environment and complex conditions in open-pit mines present substantial challenges for the implementation of autonomous transportation systems. This research introduces a novel paradigm that integrates Scenario Engineering (SE) with autonomous transportation systems to significantly improve the trustworthiness, robustness, and efficiency in open-pit mines by incorporating the four key components of SE, including Scenario Feature Extractor, Intelligence and Index (I&I), Calibration and Certification (C&C), and Verification and Validation (V&V). This paradigm has been validated in two famous open-pit mines, the experiment results demonstrate marked improvements in robustness, trustworthiness, and efficiency. By enhancing the capacity, scalability, and diversity of autonomous transportation, this paradigm fosters the integration of SE and parallel driving and finally propels the achievement of the '6S' objectives.
FusionPlanner: A Multi-task Motion Planner for Mining Trucks via Multi-sensor Fusion
Teng, Siyu, Li, Luxi, Li, Yuchen, Hu, Xuemin, Li, Lingxi, Ai, Yunfeng, Chen, Long
In recent years, significant achievements have been made in motion planning for intelligent vehicles. However, as a typical unstructured environment, open-pit mining attracts limited attention due to its complex operational conditions and adverse environmental factors. A comprehensive paradigm for unmanned transportation in open-pit mines is proposed in this research. Firstly, we propose a multi-task motion planning algorithm, called FusionPlanner, for autonomous mining trucks by the multi-sensor fusion method to adapt both lateral and longitudinal control tasks for unmanned transportation. Then, we develop a novel benchmark called MiningNav, which offers three validation approaches to evaluate the trustworthiness and robustness of well-trained algorithms in transportation roads of open-pit mines. Finally, we introduce the Parallel Mining Simulator (PMS), a new high-fidelity simulator specifically designed for open-pit mining scenarios. PMS enables the users to manage and control open-pit mine transportation from both the single-truck control and multi-truck scheduling perspectives. The performance of FusionPlanner is tested by MiningNav in PMS, and the empirical results demonstrate a significant reduction in the number of collisions and takeovers of our planner. We anticipate our unmanned transportation paradigm will bring mining trucks one step closer to trustworthiness and robustness in continuous round-the-clock unmanned transportation.
Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives
Teng, Siyu, Hu, Xuemin, Deng, Peng, Li, Bai, Li, Yuchen, Yang, Dongsheng, Ai, Yunfeng, Li, Lingxi, Xuanyuan, Zhe, Zhu, Fenghua, Chen, Long
Intelligent vehicles (IVs) have gained worldwide attention due to their increased convenience, safety advantages, and potential commercial value. Despite predictions of commercial deployment by 2025, implementation remains limited to small-scale validation, with precise tracking controllers and motion planners being essential prerequisites for IVs. This paper reviews state-of-the-art motion planning methods for IVs, including pipeline planning and end-to-end planning methods. The study examines the selection, expansion, and optimization operations in a pipeline method, while it investigates training approaches and validation scenarios for driving tasks in end-to-end methods. Experimental platforms are reviewed to assist readers in choosing suitable training and validation strategies. A side-by-side comparison of the methods is provided to highlight their strengths and limitations, aiding system-level design choices. Current challenges and future perspectives are also discussed in this survey.
Comparison of Different Methods for Time Sequence Prediction in Autonomous Vehicles
Liu, Teng, Tian, Bin, Ai, Yunfeng, Chen, Long, Liu, Fei, Cao, Dongpu
As a combination of various kinds of technologies, autonomous vehicles could complete a series of driving tasks by itself, such as perception, decision-making, planning, and control. Since there is no human driver to handle the emergency situation, future transportation information is significant for automated vehicles. This paper proposes different methods to forecast the time series for autonomous vehicles, which are the nearest neighborhood (NN), fuzzy coding (FC), and long short term memory (LSTM). First, the formulation and operational process for these three approaches are introduced. Then, the vehicle velocity is regarded as a case study and the real-world dataset is utilized to predict future information via these techniques. Finally, the performance, merits, and drawbacks of the presented methods are analyzed and discussed.