Ahmed, Sayed
Deep Learning for Wound Tissue Segmentation: A Comprehensive Evaluation using A Novel Dataset
Kabir, Muhammad Ashad, Roy, Nidita, Hossain, Md. Ekramul, Featherston, Jill, Ahmed, Sayed
Deep learning (DL) techniques have emerged as promising solutions for medical wound tissue segmentation. However, a notable limitation in this field is the lack of publicly available labelled datasets and a standardised performance evaluation of state-of-the-art DL models on such datasets. This study addresses this gap by comprehensively evaluating various DL models for wound tissue segmentation using a novel dataset. We have curated a dataset comprising 147 wound images exhibiting six tissue types: slough, granulation, maceration, necrosis, bone, and tendon. The dataset was meticulously labelled for semantic segmentation employing supervised machine learning techniques. Three distinct labelling formats were developed -- full image, patch, and superpixel. Our investigation encompassed a wide array of DL segmentation and classification methodologies, ranging from conventional approaches like UNet, to generative adversarial networks such as cGAN, and modified techniques like FPN+VGG16. Also, we explored DL-based classification methods (e.g., ResNet50) and machine learning-based classification leveraging DL features (e.g., AlexNet+RF). In total, 82 wound tissue segmentation models were derived across the three labelling formats. Our analysis yielded several notable findings, including identifying optimal DL models for each labelling format based on weighted average Dice or F1 scores. Notably, FPN+VGG16 emerged as the top-performing DL model for wound tissue segmentation, achieving a dice score of 82.25%. This study provides a valuable benchmark for evaluating wound image segmentation and classification models, offering insights to inform future research and clinical practice in wound care. The labelled dataset created in this study is available at https://github.com/akabircs/WoundTissue.
AI-Driven Personalised Offloading Device Prescriptions: A Cutting-Edge Approach to Preventing Diabetes-Related Plantar Forefoot Ulcers and Complications
Ahmed, Sayed, Kabir, Muhammad Ashad, Chowdhury, Muhammad E. H., Nancarrow, Susan
Diabetes-related foot ulcers and complications are a significant concern for individuals with diabetes, leading to severe health implications such as lower-limb amputation and reduced quality of life. This chapter discusses applying AI-driven personalised offloading device prescriptions as an advanced solution for preventing such conditions. By harnessing the capabilities of artificial intelligence, this cutting-edge approach enables the prescription of offloading devices tailored to each patient's specific requirements. This includes the patient's preferences on offloading devices such as footwear and foot orthotics and their adaptations that suit the patient's intention of use and lifestyle. Through a series of studies, real-world data analysis and machine learning algorithms, high-risk areas can be identified, facilitating the recommendation of precise offloading strategies, including custom orthotic insoles, shoe adaptations, or specialised footwear. By including patient-specific factors to promote adherence, proactively addressing pressure points and promoting optimal foot mechanics, these personalised offloading devices have the potential to minimise the occurrence of foot ulcers and associated complications. This chapter proposes an AI-powered Clinical Decision Support System (CDSS) to recommend personalised prescriptions of offloading devices (footwear and insoles) for patients with diabetes who are at risk of foot complications. This innovative approach signifies a transformative leap in diabetic foot care, offering promising opportunities for preventive healthcare interventions.