Ahmed, Abdulaziz
Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients
Ahmed, Abdulaziz, Saleem, Mohammad, Alzeen, Mohammed, Birur, Badari, Fargason, Rachel E, Burk, Bradley G, Harkins, Hannah Rose, Alhassan, Ahmed, Al-Garadi, Mohammed Ali
Importance: Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days. Traditional machine learning models for predicting these returns often lack interpretability for clinical use. Objective: To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models. Methods: This retrospective cohort study analyzed 42,464 ED visits for 27,904 unique mental health patients at an academic medical center in the Deep South from January 2018 to December 2022. Main Outcomes and Measures: Two primary outcomes were evaluated: (1) 30-day ED return prediction accuracy and (2) model interpretability using a novel LLM-enhanced framework integrating SHAP (SHapley Additive exPlanations) values with clinical knowledge. Results: For chief complaint classification, LLaMA 3 (8B) with 10-shot learning outperformed traditional models (accuracy: 0.882, F1-score: 0.86). In SDoH classification, LLM-based models achieved 0.95 accuracy and 0.96 F1-score, with Alcohol, Tobacco, and Substance Abuse performing best (F1: 0.96-0.89), while Exercise and Home Environment showed lower performance (F1: 0.70-0.67). The LLM-based interpretability framework achieved 99% accuracy in translating model predictions into clinically relevant explanations. LLM-extracted features improved XGBoost AUC from 0.74 to 0.76 and AUC-PR from 0.58 to 0.61. Conclusions and Relevance: Integrating LLMs with machine learning models yielded modest but consistent accuracy gains while significantly enhancing interpretability through automated, clinically relevant explanations. This approach provides a framework for translating predictive analytics into actionable clinical insights.
Machine Learning Applications in Studying Mental Health Among Immigrants and Racial and Ethnic Minorities: A Systematic Review
Park, Khushbu Khatri, Ahmed, Abdulaziz, Al-Garadi, Mohammed Ali
Background: The use of machine learning (ML) in mental health (MH) research is increasing, especially as new, more complex data types become available to analyze. By systematically examining the published literature, this review aims to uncover potential gaps in the current use of ML to study MH in vulnerable populations of immigrants, refugees, migrants, and racial and ethnic minorities. Methods: In this systematic review, we queried Google Scholar for ML-related terms, MH-related terms, and a population of a focus search term strung together with Boolean operators. Backward reference searching was also conducted. Included peer-reviewed studies reported using a method or application of ML in an MH context and focused on the populations of interest. We did not have date cutoffs. Publications were excluded if they were narrative or did not exclusively focus on a minority population from the respective country. Data including study context, the focus of mental healthcare, sample, data type, type of ML algorithm used, and algorithm performance was extracted from each. Results: Our search strategies resulted in 67,410 listed articles from Google Scholar. Ultimately, 12 were included. All the articles were published within the last 6 years, and half of them studied populations within the US. Most reviewed studies used supervised learning to explain or predict MH outcomes. Some publications used up to 16 models to determine the best predictive power. Almost half of the included publications did not discuss their cross-validation method. Conclusions: The included studies provide proof-of-concept for the potential use of ML algorithms to address MH concerns in these special populations, few as they may be. Our systematic review finds that the clinical application of these models for classifying and predicting MH disorders is still under development.
An Adaptive Simulated Annealing-Based Machine Learning Approach for Developing an E-Triage Tool for Hospital Emergency Operations
Ahmed, Abdulaziz, Al-Maamari, Mohammed, Firouz, Mohammad, Delen, Dursun
Patient triage at emergency departments (EDs) is necessary to prioritize care for patients with critical and time-sensitive conditions. Different tools are used for patient triage and one of the most common ones is the emergency severity index (ESI), which has a scale of five levels, where level 1 is the most urgent and level 5 is the least urgent. This paper proposes a framework for utilizing machine learning to develop an e-triage tool that can be used at EDs. A large retrospective dataset of ED patient visits is obtained from the electronic health record of a healthcare provider in the Midwest of the US for three years. However, the main challenge of using machine learning algorithms is that most of them have many parameters and without optimizing these parameters, developing a high-performance model is not possible. This paper proposes an approach to optimize the hyperparameters of machine learning. The metaheuristic optimization algorithms simulated annealing (SA) and adaptive simulated annealing (ASA) are proposed to optimize the parameters of extreme gradient boosting (XGB) and categorical boosting (CaB). The newly proposed algorithms are SA-XGB, ASA-XGB, SA-CaB, ASA-CaB. Grid search (GS), which is a traditional approach used for machine learning fine-tunning is also used to fine-tune the parameters of XGB and CaB, which are named GS-XGB and GS-CaB. The six algorithms are trained and tested using eight data groups obtained from the feature selection phase. The results show ASA-CaB outperformed all the proposed algorithms with accuracy, precision, recall, and f1 of 83.3%, 83.2%, 83.3%, 83.2%, respectively.
A Study of Left Before Treatment Complete Emergency Department Patients: An Optimized Explanatory Machine Learning Framework
Ahmed, Abdulaziz, Aram, Khalid Y., Tutun, Salih
The issue of left before treatment complete (LBTC) patients is common in emergency departments (EDs). This issue represents a medico-legal risk and may cause a revenue loss. Thus, understanding the factors that cause patients to leave before treatment is complete is vital to mitigate and potentially eliminate these adverse effects. This paper proposes a framework for studying the factors that affect LBTC outcomes in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization--one of the main challenges of machine learning model development. Three metaheuristic optimization algorithms are employed for optimizing the parameters of extreme gradient boosting (XGB), which are simulated annealing (SA), adaptive simulated annealing (ASA), and adaptive tabu simulated annealing (ATSA). The optimized XGB models are used to predict the LBTC outcomes for the patients under treatment in ED. The designed algorithms are trained and tested using four data groups resulting from the feature selection phase. The model with the best predictive performance is interpreted using SHaply Additive exPlanations (SHAP) method. The findings show that ATSA-XGB outperformed other mode configurations with an accuracy, area under the curve (AUC), sensitivity, specificity, and F1-score of 86.61%, 87.50%, 85.71%, 87.51%, and 86.60%, respectively. The degree and the direction of effects of each feature were determined and explained using the SHAP method.