Ahmadi, Babak
MapReduce Lifting for Belief Propagation
Ahmadi, Babak (Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS) | Kersting, Kristian (University of Bonn) | Natarajan, Sriraam (Wake Forest University)
Judging by the increasing impact of machine learning on large-scale data analysis in the last decade, one can anticipate a substantial growth in diversity of the machine learning applications for "big data" over the next decade. This exciting new opportunity, however, also raises many challenges. One of them is scaling inference within and training of graphical models. Typical ways to address this scaling issue are inference by approximate message passing, stochastic gradients, and MapReduce, among others. Often, we encounter inference and training problems with symmetries and redundancies in the graph structure. It has been shown that inference and training can indeed benefit from exploiting symmetries, for example by lifting loopy belief propagation (LBP).% can be lifted. That is, a model is compressed by grouping nodes together that send and receive identical messages so that a modified LBP running on the lifted graph yields the same marginals as LBP on the original one, but often in a fraction of time. By establishing a link between lifting and radix sort, we show that lifting is MapReduce-able and thus combine the two orthogonal approaches to scaling inference, namely exploiting symmetries and employing parallel computations.
Counting Belief Propagation
Kersting, Kristian, Ahmadi, Babak, Natarajan, Sriraam
A major benefit of graphical models is that most knowledge is captured in the model structure. Many models, however, produce inference problems with a lot of symmetries not reflected in the graphical structure and hence not exploitable by efficient inference techniques such as belief propagation (BP). In this paper, we present a new and simple BP algorithm, called counting BP, that exploits such additional symmetries. Starting from a given factor graph, counting BP first constructs a compressed factor graph of clusternodes and clusterfactors, corresponding to sets of nodes and factors that are indistinguishable given the evidence. Then it runs a modified BP algorithm on the compressed graph that is equivalent to running BP on the original factor graph. Our experiments show that counting BP is applicable to a variety of important AI tasks such as (dynamic) relational models and boolean model counting, and that significant efficiency gains are obtainable, often by orders of magnitude.
Markov Logic Sets: Towards Lifted Information Retrieval Using PageRank and Label Propagation
Neumann, Marion (Fraunhofer IAIS) | Ahmadi, Babak (Fraunhofer IAIS) | Kersting, Kristian (Fraunhofer IAIS)
Inspired by “GoogleTM Sets” and Bayesian sets, we consider the problem of retrieving complex objects and relations among them, i.e., ground atoms from a logical concept, given a query consisting of a few atoms from that concept. We formulate this as a within-network relational learning problem using few labels only and describe an algorithm that ranks atoms using a score based on random walks with restart (RWR): the probability that a random surfer hits an atom starting from the query atoms. Specifically, we compute an initial ranking using personalized PageRank. Then, we find paths of atoms that are connected via their arguments, variablize the ground atoms in each path, in order to create features for the query. These features are used to re-personalize the original RWR and to finally compute the set completion, based on Label Propagation. Moreover, we exploit that RWR techniques can naturally be lifted and show that lifted inference for label propagation is possible. We evaluate our algorithm on a realworld relational dataset by finding completions of sets of objects describing the Roman city of Pompeii. We compare to Bayesian sets and show that our approach gives very reasonable set completions.
Informed Lifting for Message-Passing
Kersting, Kristian (Fraunhofer Institute for Intelligent Analysis and Information Systems and University of Bonn) | Massaoudi, Youssef El (Fraunhofer Institute for Intelligent Analysis and Information Systems) | Hadiji, Fabian (Fraunhofer Institute for Intelligent Analysis and Information Systems) | Ahmadi, Babak (Fraunhofer Institute for Intelligent Analysis and Information Systems)
Lifted inference, handling whole sets of indistinguishable objects together, is critical to the effective application of probabilistic relational models to realistic real world tasks. Recently, lifted belief propagation (LBP) has been proposed as an efficient approximate solution of this inference problem. It runs a modified BP on a lifted network where nodes have been grouped together if they have — roughly speaking — identical computation trees, the tree-structured “unrolling” of the underlying graph rooted at the nodes. In many situations, this purely syntactic criterion is too pessimistic: message errors decay along paths. Intuitively, for a long chain graph with weak edge potentials, distant nodes will send and receive identical messages yet their computation trees are quite different. To overcome this, we propose iLBP, a novel, easy-to-implement, informed LBP approach that interleaves lifting and modified BP iterations. In turn, we can efficiently monitor the true BP messages sent and received in each iteration and group nodes accordingly. As our experiments show, iLBP can yield significantly faster more lifted network while not degrading performance. Above all, we show that iLBP is faster than BP when solving the problem of distributing data to a large network, an important real-world application where BP is faster than uninformed LBP.