Goto

Collaborating Authors

Aha, David


Trust-Guided Behavior Adaptation Using Case-Based Reasoning

AAAI Conferences

The addition of a robot to a team can be difficult if the human teammates do not trust the robot. This can result in underutilization or disuse of the robot, even if the robot has skills or abilities that are necessary to achieve team goals or reduce risk. To help a robot integrate itself with a human team, we present an agent algorithm that allows a robot to estimate its trustworthiness and adapt its behavior accordingly. As behavior adaptation is performed, using case-based reasoning (CBR), information about the adaptation process is stored and used to improve the efficiency of future adaptations.


Goal-Driven Autonomy in a Navy Strategy Simulation

AAAI Conferences

Modern complex games and simulations pose many challenges for an intelligent agent, including partial observability, continuous time and effects, hostile opponents, and exogenous events. We present ARTUE (Autonomous Response to Unexpected Events), a domain-independent autonomous agent that dynamically reasons about what goals to pursue in response to unexpected circumstances in these types of environments. ARTUE integrates AI research in planning, environment monitoring, explanation, goal generation, and goal management. To explain our conceptualization of the problem ARTUE addresses, we present a new conceptual framework, goal-driven autonomy, for agents that reason about their goals. We evaluate ARTUE on scenarios in the TAO Sandbox, a Navy training simulation, and demonstrate its novel architecture, which includes components for Hierarchical Task Network planning, explanation, and goal management. Our evaluation shows that ARTUE can perform well in a complex environment and that each component is necessary and contributes to the performance of the integrated system.


Planning in Dynamic Environments: Extending HTNs with Nonlinear Continuous Effects

AAAI Conferences

Planning in dynamic continuous environments requires reasoning about nonlinear continuous effects, which previous Hierarchical Task Network (HTN) planners do not support. In this paper, we extend an existing HTN planner with a new state projection algorithm. To our knowledge, this is the first HTN planner that can reason about nonlinear continuous effects. We use a wait action to instruct this planner to consider continuous effects in a given state. We also introduce a new planning domain to demonstrate the benefits of planning with nonlinear continuous effects. We compare our approach with a linear continuous effects planner and a discrete effects HTN planner on a benchmark domain, which reveals that its additional costs are largely mitigated by domain knowledge. Finally, we present an initial application of this algorithm in a practical domain, a Navy training simulation, illustrating the utility of this approach for planning in dynamic continuous environments.


Case-Based Reasoning Integrations

AI Magazine

This article presents an overview and survey of current work in case-based reasoning (CBR) integrations. There has been a recent upsurge in the integration of CBR with other reasoning modalities and computing paradigms, especially rule-based reasoning (RBR) and constraint-satisfaction problem (CSP) solving. CBR integrations with modelbased reasoning (MBR), genetic algorithms, and information retrieval are also discussed. This article characterizes the types of multimodal reasoning integrations where CBR can play a role, identifies the types of roles that CBR components can fulfill, and provides examples of integrated CBR systems. Past progress, current trends, and issues for future research are discussed.


Case-Based Reasoning Integrations

AI Magazine

This article presents an overview and survey of current work in case-based reasoning (CBR) integrations. There has been a recent upsurge in the integration of CBR with other reasoning modalities and computing paradigms, especially rule-based reasoning (RBR) and constraint-satisfaction problem (CSP) solving. CBR integrations with modelbased reasoning (MBR), genetic algorithms, and information retrieval are also discussed. This article characterizes the types of multimodal reasoning integrations where CBR can play a role, identifies the types of roles that CBR components can fulfill, and provides examples of integrated CBR systems.


AAAI 2000 Workshop Reports

AI Magazine

The AAAI-2000 Workshop Program was held Sunday and Monday, 3031 July 2000 at the Hyatt Regency Austin and the Austin Convention Center in Austin, Texas. The 15 workshops held were (1) Agent-Oriented Information Systems, (2) Artificial Intelligence and Music, (3) Artificial Intelligence and Web Search, (4) Constraints and AI Planning, (5) Integration of AI and OR: Techniques for Combinatorial Optimization, (6) Intelligent Lessons Learned Systems, (7) Knowledge-Based Electronic Markets, (8) Learning from Imbalanced Data Sets, (9) Learning Statistical Models from Rela-tional Data, (10) Leveraging Probability and Uncertainty in Computation, (11) Mobile Robotic Competition and Exhibition, (12) New Research Problems for Machine Learning, (13) Parallel and Distributed Search for Reasoning, (14) Representational Issues for Real-World Planning Systems, and (15) Spatial and Temporal Granularity.


AAAI 2000 Workshop Reports

AI Magazine

The AAAI-2000 Workshop Program was held Sunday and Monday, 3031 July 2000 at the Hyatt Regency Austin and the Austin Convention Center in Austin, Texas. The 15 workshops held were (1) Agent-Oriented Information Systems, (2) Artificial Intelligence and Music, (3) Artificial Intelligence and Web Search, (4) Constraints and AI Planning, (5) Integration of AI and OR: Techniques for Combinatorial Optimization, (6) Intelligent Lessons Learned Systems, (7) Knowledge-Based Electronic Markets, (8) Learning from Imbalanced Data Sets, (9) Learning Statistical Models from Rela-tional Data, (10) Leveraging Probability and Uncertainty in Computation, (11) Mobile Robotic Competition and Exhibition, (12) New Research Problems for Machine Learning, (13) Parallel and Distributed Search for Reasoning, (14) Representational Issues for Real-World Planning Systems, and (15) Spatial and Temporal Granularity.