Goto

Collaborating Authors

 Agrawal, Akash


Adaptive Multi-Fidelity Reinforcement Learning for Variance Reduction in Engineering Design Optimization

arXiv.org Artificial Intelligence

Multi-fidelity Reinforcement Learning (RL) frameworks efficiently utilize computational resources by integrating analysis models of varying accuracy and costs. The prevailing methodologies, characterized by transfer learning, human-inspired strategies, control variate techniques, and adaptive sampling, predominantly depend on a structured hierarchy of models. However, this reliance on a model hierarchy can exacerbate variance in policy learning when the underlying models exhibit heterogeneous error distributions across the design space. To address this challenge, this work proposes a novel adaptive multi-fidelity RL framework, in which multiple heterogeneous, non-hierarchical low-fidelity models are dynamically leveraged alongside a high-fidelity model to efficiently learn a high-fidelity policy. Specifically, low-fidelity policies and their experience data are adaptively used for efficient targeted learning, guided by their alignment with the high-fidelity policy. The effectiveness of the approach is demonstrated in an octocopter design optimization problem, utilizing two low-fidelity models alongside a high-fidelity simulator. The results demonstrate that the proposed approach substantially reduces variance in policy learning, leading to improved convergence and consistent high-quality solutions relative to traditional hierarchical multi-fidelity RL methods. Moreover, the framework eliminates the need for manually tuning model usage schedules, which can otherwise introduce significant computational overhead. This positions the framework as an effective variance-reduction strategy for multi-fidelity RL, while also mitigating the computational and operational burden of manual fidelity scheduling.


Adaptive Learning of Design Strategies over Non-Hierarchical Multi-Fidelity Models via Policy Alignment

arXiv.org Artificial Intelligence

Multi-fidelity Reinforcement Learning (RL) frameworks significantly enhance the efficiency of engineering design by leveraging analysis models with varying levels of accuracy and computational costs. The prevailing methodologies, characterized by transfer learning, human-inspired strategies, control variate techniques, and adaptive sampling, predominantly depend on a structured hierarchy of models. However, this reliance on a model hierarchy overlooks the heterogeneous error distributions of models across the design space, extending beyond mere fidelity levels. This work proposes ALPHA (Adaptively Learned Policy with Heterogeneous Analyses), a novel multi-fidelity RL framework to efficiently learn a high-fidelity policy by adaptively leveraging an arbitrary set of non-hierarchical, heterogeneous, low-fidelity models alongside a high-fidelity model. Specifically, low-fidelity policies and their experience data are dynamically used for efficient targeted learning, guided by their alignment with the high-fidelity policy. The effectiveness of ALPHA is demonstrated in analytical test optimization and octocopter design problems, utilizing two low-fidelity models alongside a high-fidelity one. The results highlight ALPHA's adaptive capability to dynamically utilize models across time and design space, eliminating the need for scheduling models as required in a hierarchical framework. Furthermore, the adaptive agents find more direct paths to high-performance solutions, showing superior convergence behavior compared to hierarchical agents.


A Visual-Analytical Approach for Automatic Detection of Cyclonic Events in Satellite Observations

arXiv.org Artificial Intelligence

Estimating the location and intensity of tropical cyclones holds crucial significance for predicting catastrophic weather events. In this study, we approach this task as a detection and regression challenge, specifically over the North Indian Ocean (NIO) region where best tracks location and wind speed information serve as the labels. The current process for cyclone detection and intensity estimation involves physics-based simulation studies which are time-consuming, only using image features will automate the process for significantly faster and more accurate predictions. While conventional methods typically necessitate substantial prior knowledge for training, we are exploring alternative approaches to enhance efficiency. This research aims to focus specifically on cyclone detection, intensity estimation and related aspects using only image input and data-driven approaches and will lead to faster inference time and automate the process as opposed to current NWP models being utilized at SAC. In context to algorithm development, a novel two stage detection and intensity estimation module is proposed. In the first level detection we try to localize the cyclone over an entire image as captured by INSAT3D over the NIO (North Indian Ocean). For the intensity estimation task, we propose a CNN-LSTM network, which works on the cyclone centered images, utilizing a ResNet-18 backbone, by which we are able to capture both temporal and spatial characteristics.