Agarwal, Shivali
Extracting Procedural Knowledge from Technical Documents
Agarwal, Shivali, Atreja, Shubham, Agarwal, Vikas
Procedures are an important knowledge component of documents that can be leveraged by cognitive assistants for automation, question-answering or driving a conversation. It is a challenging problem to parse big dense documents like product manuals, user guides to automatically understand which parts are talking about procedures and subsequently extract them. Most of the existing research has focused on extracting flows in given procedures or understanding the procedures in order to answer conceptual questions. Identifying and extracting multiple procedures automatically from documents of diverse formats remains a relatively less addressed problem. In this work, we cover some of this ground by -- 1) Providing insights on how structural and linguistic properties of documents can be grouped to define types of procedures, 2) Analyzing documents to extract the relevant linguistic and structural properties, and 3) Formulating procedure identification as a classification problem that leverages the features of the document derived from the above analysis. We first implemented and deployed unsupervised techniques which were used in different use cases. Based on the evaluation in different use cases, we figured out the weaknesses of the unsupervised approach. We then designed an improved version which was supervised. We demonstrate that our technique is effective in identifying procedures from big and complex documents alike by achieving accuracy of 89%.
Cognitive system to achieve human-level accuracy in automated assignment of helpdesk email tickets
Mandal, Atri, Malhotra, Nikhil, Agarwal, Shivali, Ray, Anupama, Sridhara, Giriprasad
Ticket assignment/dispatch is a crucial part of service delivery business with lot of scope for automation and optimization. In this paper, we present an end-to-end automated helpdesk email ticket assignment system, which is also offered as a service. The objective of the system is to determine the nature of the problem mentioned in an incoming email ticket and then automatically dispatch it to an appropriate resolver group (or team) for resolution. The proposed system uses an ensemble classifier augmented with a configurable rule engine. While design of classifier that is accurate is one of the main challenges, we also need to address the need of designing a system that is robust and adaptive to changing business needs. We discuss some of the main design challenges associated with email ticket assignment automation and how we solve them. The design decisions for our system are driven by high accuracy, coverage, business continuity, scalability and optimal usage of computational resources. Our system has been deployed in production of three major service providers and currently assigning over 40,000 emails per month, on an average, with an accuracy close to 90% and covering at least 90% of email tickets. This translates to achieving human-level accuracy and results in a net saving of about 23000 man-hours of effort per annum.