Goto

Collaborating Authors

 Agarwal, Alekh


Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting

arXiv.org Machine Learning

A learned generative model often produces biased statistics relative to the underlying data distribution. A standard technique to correct this bias is importance sampling, where samples from the model are weighted by the likelihood ratio under model and true distributions. When the likelihood ratio is unknown, it can be estimated by training a probabilistic classifier to distinguish samples from the two distributions. In this paper, we employ this likelihood-free importance weighting framework to correct for the bias in state-of-the-art deep generative models. We find that this technique consistently improves standard goodness-of-fit metrics for evaluating the sample quality of state-of-the-art generative models, suggesting reduced bias. Finally, we demonstrate its utility on representative applications in a) data augmentation for classification using generative adversarial networks, and b) model-based policy evaluation using off-policy data.


On the Optimality of Sparse Model-Based Planning for Markov Decision Processes

arXiv.org Machine Learning

This work considers the sample complexity of obtaining an $\epsilon$-optimal policy in a discounted Markov Decision Process (MDP), given only access to a generative model. In this model, the learner accesses the underlying transition model via a sampling oracle that provides a sample of the next state, when given any state-action pair as input. In this work, we study the effectiveness of the most natural plug-in approach to model-based planning: we build the maximum likelihood estimate of the transition model in the MDP from observations and then find an optimal policy in this empirical MDP. We ask arguably the most basic and unresolved question in model-based planning: is the na\"ive "plug-in" approach, non-asymptotically, minimax optimal in the quality of the policy it finds, given a fixed sample size? With access to a generative model, we resolve this question in the strongest possible sense: our main result shows that \emph{any} high accuracy solution in the plug-in model constructed with $N$ samples, provides an $\epsilon$-optimal policy in the true underlying MDP. In comparison, all prior (non-asymptotically) minimax optimal results use model-free approaches, such as the Variance Reduced Q-value iteration algorithm (Sidford et al 2018), while the best known model-based results (e.g. Azar et al 2013) require larger sample sample sizes in their dependence on the planning horizon or the state space. Notably, we show that the model-based approach allows the use of \emph{any} efficient planning algorithm in the empirical MDP, which simplifies the algorithm design as this approach does not tie the algorithm to the sampling procedure. The core of our analysis is a novel "absorbing MDP" construction to address the statistical dependency issues that arise in the analysis of model-based planning approaches, a construction which may be helpful more generally.


Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds

arXiv.org Machine Learning

We design a new algorithm for batch active learning with deep neural network models. Our algorithm, Batch Active learning by Diverse Gradient Embeddings (BADGE), samples groups of points that are disparate and high-magnitude when represented in a hallucinated gradient space, a strategy designed to incorporate both predictive uncertainty and sample diversity into every selected batch. Crucially, BADGE trades off between diversity and uncertainty without requiring any hand-tuned hyperparameters. We show that while other approaches sometimes succeed for particular batch sizes or architectures, BADGE consistently performs as well or better, making it a versatile option for practical active learning problems.


Fair Regression: Quantitative Definitions and Reduction-based Algorithms

arXiv.org Machine Learning

In this paper, we study the prediction of a real-valued target, such as a risk score or recidivism rate, while guaranteeing a quantitative notion of fairness with respect to a protected attribute such as gender or race. We call this class of problems \emph{fair regression}. We propose general schemes for fair regression under two notions of fairness: (1) statistical parity, which asks that the prediction be statistically independent of the protected attribute, and (2) bounded group loss, which asks that the prediction error restricted to any protected group remain below some pre-determined level. While we only study these two notions of fairness, our schemes are applicable to arbitrary Lipschitz-continuous losses, and so they encompass least-squares regression, logistic regression, quantile regression, and many other tasks. Our schemes only require access to standard risk minimization algorithms (such as standard classification or least-squares regression) while providing theoretical guarantees on the optimality and fairness of the obtained solutions. In addition to analyzing theoretical properties of our schemes, we empirically demonstrate their ability to uncover fairness--accuracy frontiers on several standard datasets.


Active Learning for Cost-Sensitive Classification

arXiv.org Machine Learning

We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each label's cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that could be the best, ignoring the sure losers. We prove COAL can be efficiently implemented for any regression family that admits squared loss optimization; it also enjoys strong guarantees with respect to predictive performance and labeling effort. We empirically compare COAL to passive learning and several active learning baselines, showing significant improvements in labeling effort and test cost on real-world datasets.


Metareasoning in Modular Software Systems: On-the-Fly Configuration using Reinforcement Learning with Rich Contextual Representations

arXiv.org Machine Learning

Assemblies of modular subsystems are being pressed into service to perform sensing, reasoning, and decision making in high-stakes, time-critical tasks in such areas as transportation, healthcare, and industrial automation. We address the opportunity to maximize the utility of an overall computing system by employing reinforcement learning to guide the configuration of the set of interacting modules that comprise the system. The challenge of doing system-wide optimization is a combinatorial problem. Local attempts to boost the performance of a specific module by modifying its configuration often leads to losses in overall utility of the system's performance as the distribution of inputs to downstream modules changes drastically. We present metareasoning techniques which consider a rich representation of the input, monitor the state of the entire pipeline, and adjust the configuration of modules on-the-fly so as to maximize the utility of a system's operation. We show significant improvement in both real-world and synthetic pipelines across a variety of reinforcement learning techniques.


Off-Policy Policy Gradient with State Distribution Correction

arXiv.org Artificial Intelligence

The ability to use data about prior decisions and their outcomes to make counterfactual inferences about how alternative decision policies might perform, is a cornerstone of intelligent behavior. It also has immense practical potential - it can enable the use of electronic medical record data to infer better treatment decisions for patients, the use of prior product recommendations to inform more effective strategies for presenting recommendations, and previously collected data from students using educational software to better teach those and future students. Such counterfactual reasoning, particularly when one is deriving decision policies that will be used to make not one but a sequence of decisions, is important since online sampling during a learning procedure is both costly and dangerous, and not practical in many of the applications above. While amply motivated, doing such counterfactual reasoning is also challenging because the data is censored - we can only observe the result of providing a particular chemotherapy treatment policy to a particular patient, not the counterfactual of if we were then to start with a radiation sequence. We focus on the problem of performing such counterfactual inferences in the context of sequential decision making in a Markov decision process (MDP).


Provably efficient RL with Rich Observations via Latent State Decoding

arXiv.org Machine Learning

We study the exploration problem in episodic MDPs with rich observations generated from a small number of latent states. Under certain identifiability assumptions, we demonstrate how to estimate a mapping from the observations to latent states inductively through a sequence of regression and clustering steps---where previously decoded latent states provide labels for later regression problems---and use it to construct good exploration policies. We provide finite-sample guarantees on the quality of the learned state decoding function and exploration policies, and complement our theory with an empirical evaluation on a class of hard exploration problems. Our method exponentially improves over $Q$-learning with na\"ive exploration, even when $Q$-learning has cheating access to latent states.


Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback

arXiv.org Machine Learning

We investigate the feasibility of learning from both fully-labeled supervised data and contextual bandit data. We specifically consider settings in which the underlying learning signal may be different between these two data sources. Theoretically, we state and prove no-regret algorithms for learning that is robust to divergences between the two sources. Empirically, we evaluate some of these algorithms on a large selection of datasets, showing that our approaches are feasible, and helpful in practice.


On Oracle-Efficient PAC RL with Rich Observations

Neural Information Processing Systems

We study the computational tractability of PAC reinforcement learning with rich observations. We present new provably sample-efficient algorithms for environments with deterministic hidden state dynamics and stochastic rich observations. These methods operate in an oracle model of computation -- accessing policy and value function classes exclusively through standard optimization primitives -- and therefore represent computationally efficient alternatives to prior algorithms that require enumeration. With stochastic hidden state dynamics, we prove that the only known sample-efficient algorithm, OLIVE, cannot be implemented in the oracle model. We also present several examples that illustrate fundamental challenges of tractable PAC reinforcement learning in such general settings.