Goto

Collaborating Authors

 Adomavicius, Gediminas


De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems

arXiv.org Artificial Intelligence

Expanding the frame of evaluation to include other parties, as well as the ecosystem in which the system is deployed, leads us to a multistakeholder view of recommender system evaluation as defined in [2]: "A multistakeholder evaluation is one in which the quality of recommendations is assessed across multiple groups of stakeholders." In this article, we provide (i) an overview of the types of recommendation stakeholders that can be considered in conducting such evaluations, (ii) a discussion of the considerations and values that enter into developing measures that capture outcomes of interest for a diversity of stakeholders, (iii) an outline of a methodology for developing and applying multistakeholder evaluation, and (iv) three examples of different multistakeholder scenarios including derivations of evaluation metrics for different stakeholder groups in these different scenarios. The variety of possible stakeholders we identified that are part of the general recommendation ecosystem is suggested in Figure 1 and defined here, using the terminology from [1, 2]: Recommendation consumers are the traditional recommender system users to whom recommendations are delivered and to which typical forms of recommender system evaluation are oriented. Item providers form the general class of individuals or entities who create or otherwise stand behind the items being recommended.


Understanding Longitudinal Dynamics of Recommender Systems with Agent-Based Modeling and Simulation

arXiv.org Artificial Intelligence

Today's research in recommender systems is largely based on experimental designs that are static in a sense that they do not consider potential longitudinal effects of providing recommendations to users. In reality, however, various important and interesting phenomena only emerge or become visible over time, e.g., when a recommender system continuously reinforces the popularity of already successful artists on a music streaming site or when recommendations that aim at profit maximization lead to a loss of consumer trust in the long run. In this paper, we discuss how Agent-Based Modeling and Simulation (ABM) techniques can be used to study such important longitudinal dynamics of recommender systems. To that purpose, we provide an overview of the ABM principles, outline a simulation framework for recommender systems based on the literature, and discuss various practical research questions that can be addressed with such an ABM-based simulation framework.


Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness

arXiv.org Machine Learning

Due to accessible big data collections from consumers, products, and stores, advanced sales forecasting capabilities have drawn great attention from many companies especially in the retail business because of its importance in decision making. Improvement of the forecasting accuracy, even by a small percentage, may have a substantial impact on companies' production and financial planning, marketing strategies, inventory controls, supply chain management, and eventually stock prices. Specifically, our research goal is to forecast the sales of each product in each store in the near future. Motivated by tensor factorization methodologies for personalized context-aware recommender systems, we propose a novel approach called the Advanced Temporal Latent-factor Approach to Sales forecasting (ATLAS), which achieves accurate and individualized prediction for sales by building a single tensor-factorization model across multiple stores and products. Our contribution is a combination of: tensor framework (to leverage information across stores and products), a new regularization function (to incorporate demand dynamics), and extrapolation of tensor into future time periods using state-of-the-art statistical (seasonal auto-regressive integrated moving-average models) and machine-learning (recurrent neural networks) models. The advantages of ATLAS are demonstrated on eight product category datasets collected by the Information Resource, Inc., where a total of 165 million weekly sales transactions from more than 1,500 grocery stores over 15,560 products are analyzed.


Beyond Personalization: Research Directions in Multistakeholder Recommendation

arXiv.org Artificial Intelligence

Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.


Data mining for censored time-to-event data: A Bayesian network model for predicting cardiovascular risk from electronic health record data

arXiv.org Machine Learning

Models for predicting the risk of cardiovascular events based on individual patient characteristics are important tools for managing patient care. Most current and commonly used risk prediction models have been built from carefully selected epidemiological cohorts. However, the homogeneity and limited size of such cohorts restricts the predictive power and generalizability of these risk models to other populations. Electronic health data (EHD) from large health care systems provide access to data on large, heterogeneous, and contemporaneous patient populations. The unique features and challenges of EHD, including missing risk factor information, non-linear relationships between risk factors and cardiovascular event outcomes, and differing effects from different patient subgroups, demand novel machine learning approaches to risk model development. In this paper, we present a machine learning approach based on Bayesian networks trained on EHD to predict the probability of having a cardiovascular event within five years. In such data, event status may be unknown for some individuals as the event time is right-censored due to disenrollment and incomplete follow-up. Since many traditional data mining methods are not well-suited for such data, we describe how to modify both modelling and assessment techniques to account for censored observation times. We show that our approach can lead to better predictive performance than the Cox proportional hazards model (i.e., a regression-based approach commonly used for censored, time-to-event data) or a Bayesian network with {\em{ad hoc}} approaches to right-censoring. Our techniques are motivated by and illustrated on data from a large U.S. Midwestern health care system.


A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data

arXiv.org Machine Learning

Predicting an individual's risk of experiencing a future clinical outcome is a statistical task with important consequences for both practicing clinicians and public health experts. Modern observational databases such as electronic health records (EHRs) provide an alternative to the longitudinal cohort studies traditionally used to construct risk models, bringing with them both opportunities and challenges. Large sample sizes and detailed covariate histories enable the use of sophisticated machine learning techniques to uncover complex associations and interactions, but observational databases are often ``messy,'' with high levels of missing data and incomplete patient follow-up. In this paper, we propose an adaptation of the well-known Naive Bayes (NB) machine learning approach for classification to time-to-event outcomes subject to censoring. We compare the predictive performance of our method to the Cox proportional hazards model which is commonly used for risk prediction in healthcare populations, and illustrate its application to prediction of cardiovascular risk using an EHR dataset from a large Midwest integrated healthcare system.


Context-Aware Recommender Systems

AI Magazine

Context-aware recommender systems (CARS) generate more relevant recommendations by adapting them to the specific contextual situation of the user. This article explores how contextual information can be used to create more intelligent and useful recommender systems. It provides an overview of the multifaceted notion of context, discusses several approaches for incorporating contextual information in recommendation process, and illustrates the usage of such approaches in several application areas where different types of contexts are exploited. The article concludes by discussing the challenges and future research directions for context-aware recommender systems.


Context-Aware Recommender Systems

AI Magazine

Context-aware recommender systems (CARS) generate more relevant recommendations by adapting them to the specific contextual situation of the user. This article explores how contextual information can be used to create more intelligent and useful recommender systems. It provides an overview of the multifaceted notion of context, discusses several approaches for incorporating contextual information in recommendation process, and illustrates the usage of such approaches in several application areas where different types of contexts are exploited. The article concludes by discussing the challenges and future research directions for context-aware recommender systems.