Goto

Collaborating Authors

 Aditi Raghunathan


Unlabeled Data Improves Adversarial Robustness

Neural Information Processing Systems

We demonstrate, theoretically and empirically, that adversarial robustness can significantly benefit from semisupervised learning. Theoretically, we revisit the simple Gaussian model of Schmidt et al. [41] that shows a sample complexity gap between standard and robust classification. We prove that unlabeled data bridges this gap: a simple semisupervised learning procedure (self-training) achieves high robust accuracy using the same number of labels required for achieving high standard accuracy.


Unlabeled Data Improves Adversarial Robustness

Neural Information Processing Systems

We demonstrate, theoretically and empirically, that adversarial robustness can significantly benefit from semisupervised learning. Theoretically, we revisit the simple Gaussian model of Schmidt et al. [41] that shows a sample complexity gap between standard and robust classification. We prove that unlabeled data bridges this gap: a simple semisupervised learning procedure (self-training) achieves high robust accuracy using the same number of labels required for achieving high standard accuracy.