Goto

Collaborating Authors

 Adibuzzaman, Mohammad


Environment Scan of Generative AI Infrastructure for Clinical and Translational Science

arXiv.org Artificial Intelligence

This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the Clinical and Translational Science Award (CTSA) Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. With the rapid advancement of GenAI technologies, including large language models (LLMs), healthcare institutions face unprecedented opportunities and challenges. This research explores the current status of GenAI integration, focusing on stakeholder roles, governance structures, and ethical considerations by administering a survey among leaders of health institutions (i.e., representing academic medical centers and health systems) to assess the institutional readiness and approach towards GenAI adoption. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The study highlights significant variations in governance models, with a strong preference for centralized decision-making but notable gaps in workforce training and ethical oversight. Moreover, the results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis also reveals concerns regarding GenAI bias, data security, and stakeholder trust, which must be addressed to ensure the ethical and effective implementation of GenAI technologies. This study offers valuable insights into the challenges and opportunities of GenAI integration in healthcare, providing a roadmap for institutions aiming to leverage GenAI for improved quality of care and operational efficiency.


Structural Causal Model with Expert Augmented Knowledge to Estimate the Effect of Oxygen Therapy on Mortality in the ICU

arXiv.org Artificial Intelligence

Recent advances in causal inference techniques, more specifically, in the theory of structural causal models, provide the framework for identification of causal effects from observational data in the cases where the causal graph is identifiable, i.e., the data generating mechanism can be recovered from the joint distribution. However, no such studies have been done to demonstrate this concept with a clinical example. We present a complete framework to estimate the causal effect from observational data by augmenting expert knowledge in the model development phase and with a practical clinical application. Our clinical application entails a timely and important research question, i.e., the effect of oxygen therapy intervention in the intensive care unit (ICU); the result of this project is useful in a variety of disease conditions, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) patients in the ICU. We used data from the MIMIC III database, a standard database in the machine learning community that contains 58,976 admissions from an ICU in Boston, MA, for estimating the oxygen therapy effect on morality. We also identified the covariate-specific effect to oxygen therapy from the model for more personalized intervention.


A Causally Formulated Hazard Ratio Estimation through Backdoor Adjustment on Structural Causal Model

arXiv.org Machine Learning

Identifying causal relationships for a treatment intervention is a fundamental problem in health sciences. Randomized controlled trials (RCTs) are considered the gold standard for identifying causal relationships. However, recent advancements in the theory of causal inference based on the foundations of structural causal models (SCMs) have allowed the identification of causal relationships from observational data, under certain assumptions. Survival analysis provides standard measures, such as the hazard ratio, to quantify the effects of an intervention. While hazard ratios are widely used in clinical and epidemiological studies for RCTs, a principled approach does not exist to compute hazard ratios for observational studies with SCMs. In this work, we review existing approaches to compute hazard ratios as well as their causal interpretation, if it exists. We also propose a novel approach to compute hazard ratios from observational studies using backdoor adjustment through SCMs and do-calculus. Finally, we evaluate the approach using experimental data for Ewing's sarcoma.