Goto

Collaborating Authors

 Adhikari, Ashutosh


MCPDial: A Minecraft Persona-driven Dialogue Dataset

arXiv.org Artificial Intelligence

We propose a novel approach that uses large language models (LLMs) to generate persona-driven conversations between Players and Non-Player Characters (NPC) in games. Showcasing the application of our methodology, we introduce the Minecraft Persona-driven Dialogue dataset (MCPDial). Starting with a small seed of expert-written conversations, we employ our method to generate hundreds of additional conversations. Each conversation in the dataset includes rich character descriptions of the player and NPC. The conversations are long, allowing for in-depth and extensive interactions between the player and NPC. MCPDial extends beyond basic conversations by incorporating canonical function calls (e.g. "Call find a resource on iron ore") between the utterances. Finally, we conduct a qualitative analysis of the dataset to assess its quality and characteristics.


FLOPs as a Direct Optimization Objective for Learning Sparse Neural Networks

arXiv.org Machine Learning

There exists a plethora of techniques for inducing structured sparsity in parametric models during the optimization process, with the final goal of resource-efficient inference. However, to the best of our knowledge, none target a specific number of floating-point operations (FLOPs) as part of a single end-to-end optimization objective, despite reporting FLOPs as part of the results. Furthermore, a one-size-fits-all approach ignores realistic system constraints, which differ significantly between, say, a GPU and a mobile phone -- FLOPs on the former incur less latency than on the latter; thus, it is important for practitioners to be able to specify a target number of FLOPs during model compression. In this work, we extend a state-of-the-art technique to directly incorporate FLOPs as part of the optimization objective and show that, given a desired FLOPs requirement, different neural networks can be successfully trained for image classification.