Goto

Collaborating Authors

 Adams, Jadie


Personalized Attacks of Social Engineering in Multi-turn Conversations -- LLM Agents for Simulation and Detection

arXiv.org Artificial Intelligence

The rapid advancement of conversational agents, particularly chatbots powered by Large Language Models (LLMs), poses a significant risk of social engineering (SE) attacks on social media platforms. SE detection in multi-turn, chat-based interactions is considerably more complex than single-instance detection due to the dynamic nature of these conversations. A critical factor in mitigating this threat is understanding the mechanisms through which SE attacks operate, specifically how attackers exploit vulnerabilities and how victims' personality traits contribute to their susceptibility. In this work, we propose an LLM-agentic framework, SE-VSim, to simulate SE attack mechanisms by generating multi-turn conversations. We model victim agents with varying personality traits to assess how psychological profiles influence susceptibility to manipulation. Using a dataset of over 1000 simulated conversations, we examine attack scenarios in which adversaries, posing as recruiters, funding agencies, and journalists, attempt to extract sensitive information. Based on this analysis, we present a proof of concept, SE-OmniGuard, to offer personalized protection to users by leveraging prior knowledge of the victims personality, evaluating attack strategies, and monitoring information exchanges in conversations to identify potential SE attempts.


Point2SSM++: Self-Supervised Learning of Anatomical Shape Models from Point Clouds

arXiv.org Artificial Intelligence

Correspondence-based statistical shape modeling (SSM) stands as a powerful technology for morphometric analysis in clinical research. SSM facilitates population-level characterization and quantification of anatomical shapes such as bones and organs, aiding in pathology and disease diagnostics and treatment planning. Despite its potential, SSM remains under-utilized in medical research due to the significant overhead associated with automatic construction methods, which demand complete, aligned shape surface representations. Additionally, optimization-based techniques rely on bias-inducing assumptions or templates and have prolonged inference times as the entire cohort is simultaneously optimized. To overcome these challenges, we introduce Point2SSM++, a principled, self-supervised deep learning approach that directly learns correspondence points from point cloud representations of anatomical shapes. Point2SSM++ is robust to misaligned and inconsistent input, providing SSM that accurately samples individual shape surfaces while effectively capturing population-level statistics. Additionally, we present principled extensions of Point2SSM++ to adapt it for dynamic spatiotemporal and multi-anatomy use cases, demonstrating the broad versatility of the Point2SSM++ framework. Furthermore, we present extensions of Point2SSM++ tailored for dynamic spatiotemporal and multi-anatomy scenarios, showcasing the broad versatility of the framework. Through extensive validation across diverse anatomies, evaluation metrics, and clinically relevant downstream tasks, we demonstrate Point2SSM++'s superiority over existing state-of-the-art deep learning models and traditional approaches. Point2SSM++ substantially enhances the feasibility of SSM generation and significantly broadens its array of potential clinical applications.


Can point cloud networks learn statistical shape models of anatomies?

arXiv.org Artificial Intelligence

Statistical Shape Modeling (SSM) is a valuable tool for investigating and quantifying anatomical variations within populations of anatomies. However, traditional correspondence-based SSM generation methods have a prohibitive inference process and require complete geometric proxies (e.g., high-resolution binary volumes or surface meshes) as input shapes to construct the SSM. Unordered 3D point cloud representations of shapes are more easily acquired from various medical imaging practices (e.g., thresholded images and surface scanning). Point cloud deep networks have recently achieved remarkable success in learning permutation-invariant features for different point cloud tasks (e.g., completion, semantic segmentation, classification). However, their application to learning SSM from point clouds is to-date unexplored. In this work, we demonstrate that existing point cloud encoder-decoder-based completion networks can provide an untapped potential for SSM, capturing population-level statistical representations of shapes while reducing the inference burden and relaxing the input requirement. We discuss the limitations of these techniques to the SSM application and suggest future improvements. Our work paves the way for further exploration of point cloud deep learning for SSM, a promising avenue for advancing shape analysis literature and broadening SSM to diverse use cases.


Point2SSM: Learning Morphological Variations of Anatomies from Point Cloud

arXiv.org Artificial Intelligence

We introduce Point2SSM, a novel unsupervised learning approach that can accurately construct correspondence-based statistical shape models (SSMs) of anatomy directly from point clouds. SSMs are crucial in clinical research for analyzing the population-level morphological variation in bones and organs. However, traditional methods for creating SSMs have limitations that hinder their widespread adoption, such as the need for noise-free surface meshes or binary volumes, reliance on assumptions or predefined templates, and simultaneous optimization of the entire cohort leading to lengthy inference times given new data. Point2SSM overcomes these barriers by providing a data-driven solution that infers SSMs directly from raw point clouds, reducing inference burdens and increasing applicability as point clouds are more easily acquired. Deep learning on 3D point clouds has seen recent success in unsupervised representation learning, point-to-point matching, and shape correspondence; however, their application to constructing SSMs of anatomies is largely unexplored. In this work, we benchmark state-of-the-art point cloud deep networks on the task of SSM and demonstrate that they are not robust to the challenges of anatomical SSM, such as noisy, sparse, or incomplete input and significantly limited training data. Point2SSM addresses these challenges via an attention-based module that provides correspondence mappings from learned point features. We demonstrate that the proposed method significantly outperforms existing networks in terms of both accurate surface sampling and correspondence, better capturing population-level statistics.


Cosmic Microwave Background Recovery: A Graph-Based Bayesian Convolutional Network Approach

arXiv.org Artificial Intelligence

The cosmic microwave background (CMB) is a significant source of knowledge about the origin and evolution of our universe. However, observations of the CMB are contaminated by foreground emissions, obscuring the CMB signal and reducing its efficacy in constraining cosmological parameters. We employ deep learning as a data-driven approach to CMB cleaning from multi-frequency full-sky maps. In particular, we develop a graph-based Bayesian convolutional neural network based on the U-Net architecture that predicts cleaned CMB with pixel-wise uncertainty estimates. We demonstrate the potential of this technique on realistic simulated data based on the Planck mission. We show that our model accurately recovers the cleaned CMB sky map and resulting angular power spectrum while identifying regions of uncertainty. Finally, we discuss the current challenges and the path forward for deploying our model for CMB recovery on real observations.