Adam, Hammaad
Finding "Good Views" of Electrocardiogram Signals for Inferring Abnormalities in Cardiac Condition
Jeong, Hyewon, Yun, Suyeol, Adam, Hammaad
Electrocardiograms (ECGs) are an established technique to screen for abnormal cardiac signals. Recent work has established that it is possible to detect arrhythmia directly from the ECG signal using deep learning algorithms. While a few prior approaches with contrastive learning have been successful, the best way to define a positive sample remains an open question. In this project, we investigate several ways to define positive samples, and assess which approach yields the best performance in a downstream task of classifying arrhythmia. We explore spatiotemporal invariances, generic augmentations, demographic similarities, cardiac rhythms, and wave attributes of ECG as potential ways to match positive samples. We then evaluate each strategy with downstream task performance, and find that learned representations invariant to patient identity are powerful in arrhythmia detection.
Should I Stop or Should I Go: Early Stopping with Heterogeneous Populations
Adam, Hammaad, Yin, Fan, Huibin, null, Hu, null, Tenenholtz, Neil, Crawford, Lorin, Mackey, Lester, Koenecke, Allison
Randomized experiments often need to be stopped prematurely due to the treatment having an unintended harmful effect. Existing methods that determine when to stop an experiment early are typically applied to the data in aggregate and do not account for treatment effect heterogeneity. In this paper, we study the early stopping of experiments for harm on heterogeneous populations. We first establish that current methods often fail to stop experiments when the treatment harms a minority group of participants. We then use causal machine learning to develop CLASH, the first broadly-applicable method for heterogeneous early stopping. We demonstrate CLASH's performance on simulated and real data and show that it yields effective early stopping for both clinical trials and A/B tests.