Goto

Collaborating Authors

 Acharya, Manoj


TeleLoRA: Teleporting Model-Specific Alignment Across LLMs

arXiv.org Artificial Intelligence

Mitigating Trojans in Large Language Models (LLMs) is one of many tasks where alignment data is LLM specific, as different LLMs have different Trojan triggers and trigger behaviors to be removed. In this paper, we introduce TeleLoRA (Teleporting Low-Rank Adaptation), a novel framework that synergizes model-specific alignment data across multiple LLMs to enable zero-shot Trojan mitigation on unseen LLMs without alignment data. TeleLoRA learns a unified generator of LoRA adapter weights by leveraging local activation information across multiple LLMs. This generator is designed to be permutation symmetric to generalize across models with different architectures and sizes. We optimize the model design for memory efficiency, making it feasible to learn with large-scale LLMs with minimal computational resources. Experiments on LLM Trojan mitigation benchmarks demonstrate that TeleLoRA effectively reduces attack success rates while preserving the benign performance of the models.


Addressing Uncertainty in LLMs to Enhance Reliability in Generative AI

arXiv.org Artificial Intelligence

In this paper, we present a dynamic semantic clustering approach inspired by the Chinese Restaurant Process, aimed at addressing uncertainty in the inference of Large Language Models (LLMs). We quantify uncertainty of an LLM on a given query by calculating entropy of the generated semantic clusters. Further, we propose leveraging the (negative) likelihood of these clusters as the (non)conformity score within Conformal Prediction framework, allowing the model to predict a set of responses instead of a single output, thereby accounting for uncertainty in its predictions. We demonstrate the effectiveness of our uncertainty quantification (UQ) technique on two well known question answering benchmarks, COQA and TriviaQA, utilizing two LLMs, Llama2 and Mistral. Our approach achieves SOTA performance in UQ, as assessed by metrics such as AUROC, AUARC, and AURAC. The proposed conformal predictor is also shown to produce smaller prediction sets while maintaining the same probabilistic guarantee of including the correct response, in comparison to existing SOTA conformal prediction baseline.


Generative AI in the Construction Industry: Opportunities & Challenges

arXiv.org Artificial Intelligence

In the last decade, despite rapid advancements in artificial intelligence (AI) transforming many industry practices, construction largely lags in adoption. Recently, the emergence and rapid adoption of advanced large language models (LLM) like OpenAI's GPT, Google's PaLM, and Meta's Llama have shown great potential and sparked considerable global interest. However, the current surge lacks a study investigating the opportunities and challenges of implementing Generative AI (GenAI) in the construction sector, creating a critical knowledge gap for researchers and practitioners. This underlines the necessity to explore the prospects and complexities of GenAI integration. Bridging this gap is fundamental to optimizing GenAI's early-stage adoption within the construction sector. Given GenAI's unprecedented capabilities to generate human-like content based on learning from existing content, we reflect on two guiding questions: What will the future bring for GenAI in the construction industry? What are the potential opportunities and challenges in implementing GenAI in the construction industry? This study delves into reflected perception in literature, analyzes the industry perception using programming-based word cloud and frequency analysis, and integrates authors' opinions to answer these questions. This paper recommends a conceptual GenAI implementation framework, provides practical recommendations, summarizes future research questions, and builds foundational literature to foster subsequent research expansion in GenAI within the construction and its allied architecture & engineering domains.


2nd Place Solution for SODA10M Challenge 2021 -- Continual Detection Track

arXiv.org Artificial Intelligence

In this technical report, we present our approaches for the continual object detection track of the SODA10M challenge. We adapt ResNet50-FPN as the baseline and try several improvements for the final submission model. We find that task-specific replay scheme, learning rate scheduling, model calibration, and using original image scale helps to improve performance for both large and small objects in images. Our team `hypertune28' secured the second position among 52 participants in the challenge. This work will be presented at the ICCV 2021 Workshop on Self-supervised Learning for Next-Generation Industry-level Autonomous Driving (SSLAD).