Not enough data to create a plot.
Try a different view from the menu above.
Acharya, Anish
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Acharya, Anish, Sanghavi, Sujay, Dimakis, Alexandros G., Dhillon, Inderjit S
Data pruning -- the combinatorial task of selecting a small and representative subset from a large dataset, is crucial for mitigating the enormous computational costs associated with training data-hungry modern deep learning models at scale. Since large scale data collections are invariably noisy, developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. However, existing data pruning methods often fail under high corruption rates due to their reliance on empirical mean estimation, which is highly sensitive to outliers. In response, we propose Geometric Median (GM) Matching, a novel k-subset selection strategy that leverages Geometric Median -- a robust estimator with an optimal breakdown point of 1/2; to enhance resilience against noisy data. Our method iteratively selects a k-subset such that the mean of the subset approximates the GM of the (potentially) noisy dataset, ensuring robustness even under arbitrary corruption. We provide theoretical guarantees, showing that GM Matching enjoys an improved O(1/k) convergence rate -- a quadratic improvement over random sampling, even under arbitrary corruption. Extensive experiments across image classification and image generation tasks demonstrate that GM Matching consistently outperforms existing pruning approaches, particularly in high-corruption settings and at high pruning rates; making it a strong baseline for robust data pruning.
Contrastive Approach to Prior Free Positive Unlabeled Learning
Acharya, Anish, Sanghavi, Sujay
Positive Unlabeled (PU) learning refers to the task of learning a binary classifier given a few labeled positive samples, and a set of unlabeled samples (which could be positive or negative). In this paper, we propose a novel PU learning framework, that starts by learning a feature space through pretext-invariant representation learning and then applies pseudo-labeling to the unlabeled examples, leveraging the concentration property of the embeddings. Overall, our proposed approach handily outperforms state-of-the-art PU learning methods across several standard PU benchmark datasets, while not requiring a-priori knowledge or estimate of class prior. Remarkably, our method remains effective even when labeled data is scant, where most PU learning algorithms falter. We also provide simple theoretical analysis motivating our proposed algorithms and establish generalization guarantee for our approach.
Positive Unlabeled Contrastive Learning
Acharya, Anish, Sanghavi, Sujay, Jing, Li, Bhushanam, Bhargav, Rabbat, Michael, Dhillon, Inderjit
Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from limited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.
Neural Distributed Source Coding
Whang, Jay, Nagle, Alliot, Acharya, Anish, Kim, Hyeji, Dimakis, Alexandros G.
Distributed source coding (DSC) is the task of encoding an input in the absence of correlated side information that is only available to the decoder. Remarkably, Slepian and Wolf showed in 1973 that an encoder without access to the side information can asymptotically achieve the same compression rate as when the side information is available to it. While there is vast prior work on this topic, practical DSC has been limited to synthetic datasets and specific correlation structures. Here we present a framework for lossy DSC that is agnostic to the correlation structure and can scale to high dimensions. Rather than relying on hand-crafted source modeling, our method utilizes a conditional Vector-Quantized Variational Autoencoder (VQ-VAE) to learn the distributed encoder and decoder. We evaluate our method on multiple datasets and show that our method can handle complex correlations and achieves state-of-the-art PSNR.
DISCO : efficient unsupervised decoding for discrete natural language problems via convex relaxation
Acharya, Anish, Das, Rudrajit
In this paper we study test time decoding; an ubiquitous step in almost all sequential text generation task spanning across a wide array of natural language processing (NLP) problems. Our main contribution is to develop a continuous relaxation framework for the combinatorial NP-hard decoding problem and propose Disco - an efficient algorithm based on standard first order gradient based. We provide tight analysis and show that our proposed algorithm linearly converges to within $\epsilon$ neighborhood of the optima. Finally, we perform preliminary experiments on the task of adversarial text generation and show superior performance of Disco over several popular decoding approaches.
Robust Training in High Dimensions via Block Coordinate Geometric Median Descent
Acharya, Anish, Hashemi, Abolfazl, Jain, Prateek, Sanghavi, Sujay, Dhillon, Inderjit S., Topcu, Ufuk
Geometric median (\textsc{Gm}) is a classical method in statistics for achieving a robust estimation of the uncorrupted data; under gross corruption, it achieves the optimal breakdown point of 0.5. However, its computational complexity makes it infeasible for robustifying stochastic gradient descent (SGD) for high-dimensional optimization problems. In this paper, we show that by applying \textsc{Gm} to only a judiciously chosen block of coordinates at a time and using a memory mechanism, one can retain the breakdown point of 0.5 for smooth non-convex problems, with non-asymptotic convergence rates comparable to the SGD with \textsc{Gm}.
GupShup: An Annotated Corpus for Abstractive Summarization of Open-Domain Code-Switched Conversations
Mehnaz, Laiba, Mahata, Debanjan, Gosangi, Rakesh, Gunturi, Uma Sushmitha, Jain, Riya, Gupta, Gauri, Kumar, Amardeep, Lee, Isabelle, Acharya, Anish, Shah, Rajiv Ratn
Code-switching is the communication phenomenon where speakers switch between different languages during a conversation. With the widespread adoption of conversational agents and chat platforms, code-switching has become an integral part of written conversations in many multi-lingual communities worldwide. This makes it essential to develop techniques for summarizing and understanding these conversations. Towards this objective, we introduce abstractive summarization of Hindi-English code-switched conversations and develop the first code-switched conversation summarization dataset - GupShup, which contains over 6,831 conversations in Hindi-English and their corresponding human-annotated summaries in English and Hindi-English. We present a detailed account of the entire data collection and annotation processes. We analyze the dataset using various code-switching statistics. We train state-of-the-art abstractive summarization models and report their performances using both automated metrics and human evaluation. Our results show that multi-lingual mBART and multi-view seq2seq models obtain the best performances on the new dataset
On the Benefits of Multiple Gossip Steps in Communication-Constrained Decentralized Optimization
Hashemi, Abolfazl, Acharya, Anish, Das, Rudrajit, Vikalo, Haris, Sanghavi, Sujay, Dhillon, Inderjit
In decentralized optimization, it is common algorithmic practice to have nodes interleave (local) gradient descent iterations with gossip (i.e. averaging over the network) steps. Motivated by the training of large-scale machine learning models, it is also increasingly common to require that messages be {\em lossy compressed} versions of the local parameters. In this paper, we show that, in such compressed decentralized optimization settings, there are benefits to having {\em multiple} gossip steps between subsequent gradient iterations, even when the cost of doing so is appropriately accounted for e.g. by means of reducing the precision of compressed information. In particular, we show that having $O(\log\frac{1}{\epsilon})$ gradient iterations {with constant step size} - and $O(\log\frac{1}{\epsilon})$ gossip steps between every pair of these iterations - enables convergence to within $\epsilon$ of the optimal value for smooth non-convex objectives satisfying Polyak-\L{}ojasiewicz condition. This result also holds for smooth strongly convex objectives. To our knowledge, this is the first work that derives convergence results for nonconvex optimization under arbitrary communication compression.
Online Embedding Compression for Text Classification using Low Rank Matrix Factorization
Acharya, Anish, Goel, Rahul, Metallinou, Angeliki, Dhillon, Inderjit
Deep learning models have become state of the art for natural language processing (NLP) tasks, however deploying these models in production system poses significant memory constraints. Existing compression methods are either lossy or introduce significant latency. We propose a compression method that leverages low rank matrix factorization during training,to compress the word embedding layer which represents the size bottleneck for most NLP models. Our models are trained, compressed and then further re-trained on the downstream task to recover accuracy while maintaining the reduced size. Empirically, we show that the proposed method can achieve 90% compression with minimal impact in accuracy for sentence classification tasks, and outperforms alternative methods like fixed-point quantization or offline word embedding compression. We also analyze the inference time and storage space for our method through FLOP calculations, showing that we can compress DNN models by a configurable ratio and regain accuracy loss without introducing additional latency compared to fixed point quantization. Finally, we introduce a novel learning rate schedule, the Cyclically Annealed Learning Rate (CALR), which we empirically demonstrate to outperform other popular adaptive learning rate algorithms on a sentence classification benchmark.
Are We Ready for Driver-less Vehicles? Security vs. Privacy- A Social Perspective
Acharya, Anish
At this moment Autonomous cars are probably the biggest and most talked about technology in the Robotics Research Community. In spite of great technological advances over past few years a full edged autonomous car is still far from reality. This article talks about the existing system and discusses the possibility of a Computer Vision enabled driving being superior than the LiDar based system. A detailed overview of privacy violations that might arise from autonomous driving has been discussed in detail both from a technical as well as legal perspective. It has been proved through evidence and arguments that efficient and accurate estimation and efficient solution of the constraint satisfaction problem addressed in the case of autonomous cars are negatively correlated with the preserving the privacy of the user. It is a very difficult trade-off since both are very important aspects and has to be taken into account. The fact that one cannot compromise with the safety issues of the car makes it inevitable to run into serious privacy concerns that might have adverse social and political effects.