Abramowicz, Halina
Vertex Identification in High Energy Physics Experiments
Dror, Gideon, Abramowicz, Halina, Horn, David
In High Energy Physics experiments one has to sort through a high flux of events, at a rate of tens of MHz, and select the few that are of interest. One of the key factors in making this decision is the location of the vertex where the interaction, that led to the event, took place. Here we present a novel solution to the problem of finding the location of the vertex, based on two feedforward neural networkswith fixed architectures, whose parameters are chosen so as to obtain a high accuracy. The system is tested on simulated datasets, and is shown to perform better than conventional algorithms. 1 Introduction An event in High Energy Physics (HEP) is the experimental result of an interaction during the collision of particles in an accelerator. The result of this interaction is the production of tens of particles, each of which is ejected in a different direction and energy. Due to the quantum mechanical effects involved, the events differ from one another in the number of particles produced, the types of particles, and their energies. The trajectories of produced particles are detected by a very large and sophisticated detector.
Vertex Identification in High Energy Physics Experiments
Dror, Gideon, Abramowicz, Halina, Horn, David
In High Energy Physics experiments one has to sort through a high flux of events, at a rate of tens of MHz, and select the few that are of interest. One of the key factors in making this decision is the location of the vertex where the interaction, that led to the event, took place. Here we present a novel solution to the problem of finding the location of the vertex, based on two feedforward neural networks with fixed architectures, whose parameters are chosen so as to obtain a high accuracy. The system is tested on simulated data sets, and is shown to perform better than conventional algorithms. 1 Introduction An event in High Energy Physics (HEP) is the experimental result of an interaction during the collision of particles in an accelerator. The result of this interaction is the production of tens of particles, each of which is ejected in a different direction and energy. Due to the quantum mechanical effects involved, the events differ from one another in the number of particles produced, the types of particles, and their energies. The trajectories of produced particles are detected by a very large and sophisticated detector.
An Orientation Selective Neural Network for Pattern Identification in Particle Detectors
Abramowicz, Halina, Horn, David, Naftaly, Ury, Sahar-Pikielny, Carmit
Constructing amulti-layered neural network with fixed architecture which implements orientation selectivity, we define output elements corresponding todifferent orientations, which allow us to make a selection decision. The algorithm takes into account the granularity of the lattice as well as the presence of noise and inefficiencies. The method is applied to a sample of data collected with the ZEUS detector at HERA in order to identify cosmic muons that leave a linear pattern of signals in the segmented calorimeter. A two dimensional representation of the relevant part of the detector is used. The algorithm performs very well. Given its architecture, this system becomes a good candidate for fast pattern recognition in parallel processing devices.
An Orientation Selective Neural Network for Pattern Identification in Particle Detectors
Abramowicz, Halina, Horn, David, Naftaly, Ury, Sahar-Pikielny, Carmit
A typical problem in experiments performed at high energy accelerators aimed at studying novel effects in the field of Elementary Particle Physics is that of preselecting interesting interactions at as early a stage as possible, in order to keep the data volume manageable. One class of events that have to be eliminated is due to cosmic muons that pass all trigger conditions.