Goto

Collaborating Authors

 Abraham, Savitha Sam


To Ask or Not to Ask? Detecting Absence of Information in Vision and Language Navigation

arXiv.org Artificial Intelligence

Recent research in Vision Language Navigation (VLN) has overlooked the development of agents' inquisitive abilities, which allow them to ask clarifying questions when instructions are incomplete. This paper addresses how agents can recognize "when" they lack sufficient information, without focusing on "what" is missing, particularly in VLN tasks with vague instructions. Equipping agents with this ability enhances efficiency by reducing potential digressions and seeking timely assistance. The challenge in identifying such uncertain points is balancing between being overly cautious (high recall) and overly confident (high precision). W e propose an attention-based instruction-vagueness estimation module that learns associations between instructions and the agent's trajectory. By leveraging instruction-to-path alignment information during training, the module's vagueness estimation performance improves by around 52% in terms of precision-recall balance. In our ablative experiments, we also demonstrate the effectiveness of incorporating this additional instruction-to-path attention network alongside the cross-modal attention networks within the navigator module. Our results show that the attention scores from the instruction-to-path attention network serve as better indicators for estimating vagueness.


CLEVR-POC: Reasoning-Intensive Visual Question Answering in Partially Observable Environments

arXiv.org Artificial Intelligence

The integration of learning and reasoning is high on the research agenda in AI. Nevertheless, there is only a little attention to use existing background knowledge for reasoning about partially observed scenes to answer questions about the scene. Yet, we as humans use such knowledge frequently to infer plausible answers to visual questions (by eliminating all inconsistent ones). Such knowledge often comes in the form of constraints about objects and it tends to be highly domain or environment-specific. We contribute a novel benchmark called CLEVR-POC for reasoning-intensive visual question answering (VQA) in partially observable environments under constraints. In CLEVR-POC, knowledge in the form of logical constraints needs to be leveraged to generate plausible answers to questions about a hidden object in a given partial scene. For instance, if one has the knowledge that all cups are colored either red, green or blue and that there is only one green cup, it becomes possible to deduce the color of an occluded cup as either red or blue, provided that all other cups, including the green one, are observed. Through experiments, we observe that the low performance of pre-trained vision language models like CLIP (~ 22%) and a large language model (LLM) like GPT-4 (~ 46%) on CLEVR-POC ascertains the necessity for frameworks that can handle reasoning-intensive tasks where environment-specific background knowledge is available and crucial. Furthermore, our demonstration illustrates that a neuro-symbolic model, which integrates an LLM like GPT-4 with a visual perception network and a formal logical reasoner, exhibits exceptional performance on CLEVR-POC.


REDAffectiveLM: Leveraging Affect Enriched Embedding and Transformer-based Neural Language Model for Readers' Emotion Detection

arXiv.org Artificial Intelligence

Technological advancements in web platforms allow people to express and share emotions towards textual write-ups written and shared by others. This brings about different interesting domains for analysis; emotion expressed by the writer and emotion elicited from the readers. In this paper, we propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM. Within state-of-the-art NLP tasks, it is well understood that utilizing context-specific representations from transformer-based pre-trained language models helps achieve improved performance. Within this affective computing task, we explore how incorporating affective information can further enhance performance. Towards this, we leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention. For empirical evaluation, we procure a new dataset REN-20k, besides using RENh-4k and SemEval-2007. We evaluate the performance of our REDAffectiveLM rigorously across these datasets, against a vast set of state-of-the-art baselines, where our model consistently outperforms baselines and obtains statistically significant results. Our results establish that utilizing affect enriched representation along with context-specific representation within a neural architecture can considerably enhance readers' emotion detection. Since the impact of affect enrichment specifically in readers' emotion detection isn't well explored, we conduct a detailed analysis over affect enriched Bi-LSTM+Attention using qualitative and quantitative model behavior evaluation techniques. We observe that compared to conventional semantic embedding, affect enriched embedding increases ability of the network to effectively identify and assign weightage to key terms responsible for readers' emotion detection.


Representativity Fairness in Clustering

arXiv.org Artificial Intelligence

Incorporating fairness constructs into machine learning algorithms is a topic of much societal importance and recent interest. Clustering, a fundamental task in unsupervised learning that manifests across a number of web data scenarios, has also been subject of attention within fair ML research. In this paper, we develop a novel notion of fairness in clustering, called representativity fairness. Representativity fairness is motivated by the need to alleviate disparity across objects' proximity to their assigned cluster representatives, to aid fairer decision making. We illustrate the importance of representativity fairness in real-world decision making scenarios involving clustering and provide ways of quantifying objects' representativity and fairness over it. We develop a new clustering formulation, RFKM, that targets to optimize for representativity fairness along with clustering quality. Inspired by the $K$-Means framework, RFKM incorporates novel loss terms to formulate an objective function. The RFKM objective and optimization approach guides it towards clustering configurations that yield higher representativity fairness. Through an empirical evaluation over a variety of public datasets, we establish the effectiveness of our method. We illustrate that we are able to significantly improve representativity fairness at only marginal impact to clustering quality.


Fairness in Clustering with Multiple Sensitive Attributes

arXiv.org Artificial Intelligence

A clustering may be considered as fair on pre-specified sensitive attributes if the proportions of sensitive attribute groups in each cluster reflect that in the dataset. In this paper, we consider the task of fair clustering for scenarios involving multiple multi-valued or numeric sensitive attributes. We propose a fair clustering method, FairKM (Fair K-Means), that is inspired by the popular K-Means clustering formulation. We outline a computational notion of fairness which is used along with a cluster coherence objective, to yield the FairKM clustering method. We empirically evaluate our approach, wherein we quantify both the quality and fairness of clusters, over real-world datasets. Our experimental evaluation illustrates that the clusters generated by FairKM fare significantly better on both clustering quality and fair representation of sensitive attribute groups compared to the clusters from a state-of-the-art baseline fair clustering method.