Goto

Collaborating Authors

 Aboutalebi, Hossein


MAGID: An Automated Pipeline for Generating Synthetic Multi-modal Datasets

arXiv.org Artificial Intelligence

Development of multimodal interactive systems is hindered by the lack of rich, multimodal (text, images) conversational data, which is needed in large quantities for LLMs. Previous approaches augment textual dialogues with retrieved images, posing privacy, diversity, and quality constraints. In this work, we introduce \textbf{M}ultimodal \textbf{A}ugmented \textbf{G}enerative \textbf{I}mages \textbf{D}ialogues (MAGID), a framework to augment text-only dialogues with diverse and high-quality images. Subsequently, a diffusion model is applied to craft corresponding images, ensuring alignment with the identified text. Finally, MAGID incorporates an innovative feedback loop between an image description generation module (textual LLM) and image quality modules (addressing aesthetics, image-text matching, and safety), that work in tandem to generate high-quality and multi-modal dialogues. We compare MAGID to other SOTA baselines on three dialogue datasets, using automated and human evaluation. Our results show that MAGID is comparable to or better than baselines, with significant improvements in human evaluation, especially against retrieval baselines where the image database is small.


COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data

arXiv.org Artificial Intelligence

Since the World Health Organization declared COVID-19 a pandemic in 2020, the global community has faced ongoing challenges in controlling and mitigating the transmission of the SARS-CoV-2 virus, as well as its evolving subvariants and recombinants. A significant challenge during the pandemic has not only been the accurate detection of positive cases but also the efficient prediction of risks associated with complications and patient survival probabilities. These tasks entail considerable clinical resource allocation and attention.In this study, we introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models. We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization, utilizing clinical and biochemical data in a transparent, systematic approach. The proposed approach advances machine learning model design by seamlessly integrating domain expertise with explainability tools, enabling model decisions to be based on key biomarkers. This fosters a more transparent and interpretable decision-making process made by machines specifically for medical applications.


DeepfakeArt Challenge: A Benchmark Dataset for Generative AI Art Forgery and Data Poisoning Detection

arXiv.org Artificial Intelligence

The tremendous recent advances in generative artificial intelligence techniques have led to significant successes and promise in a wide range of different applications ranging from conversational agents and textual content generation to voice and visual synthesis. Amid the rise in generative AI and its increasing widespread adoption, there has been significant growing concern over the use of generative AI for malicious purposes. In the realm of visual content synthesis using generative AI, key areas of significant concern has been image forgery (e.g., generation of images containing or derived from copyright content), and data poisoning (i.e., generation of adversarially contaminated images). Motivated to address these key concerns to encourage responsible generative AI, we introduce the DeepfakeArt Challenge, a large-scale challenge benchmark dataset designed specifically to aid in the building of machine learning algorithms for generative AI art forgery and data poisoning detection. Comprising of over 32,000 records across a variety of generative forgery and data poisoning techniques, each entry consists of a pair of images that are either forgeries / adversarially contaminated or not. Each of the generated images in the DeepfakeArt Challenge benchmark dataset has been quality checked in a comprehensive manner. The DeepfakeArt Challenge is a core part of GenAI4Good, a global open source initiative for accelerating machine learning for promoting responsible creation and deployment of generative AI for good.


Membership Inference Attacks Against Temporally Correlated Data in Deep Reinforcement Learning

arXiv.org Artificial Intelligence

While significant research advances have been made in the field of deep reinforcement learning, there have been no concrete adversarial attack strategies in literature tailored for studying the vulnerability of deep reinforcement learning algorithms to membership inference attacks. In such attacking systems, the adversary targets the set of collected input data on which the deep reinforcement learning algorithm has been trained. To address this gap, we propose an adversarial attack framework designed for testing the vulnerability of a state-of-the-art deep reinforcement learning algorithm to a membership inference attack. In particular, we design a series of experiments to investigate the impact of temporal correlation, which naturally exists in reinforcement learning training data, on the probability of information leakage. Moreover, we compare the performance of \emph{collective} and \emph{individual} membership attacks against the deep reinforcement learning algorithm. Experimental results show that the proposed adversarial attack framework is surprisingly effective at inferring data with an accuracy exceeding $84\%$ in individual and $97\%$ in collective modes in three different continuous control Mujoco tasks, which raises serious privacy concerns in this regard. Finally, we show that the learning state of the reinforcement learning algorithm influences the level of privacy breaches significantly.


Residual Error: a New Performance Measure for Adversarial Robustness

arXiv.org Machine Learning

Despite the significant advances in deep learning over the past decade, a major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks. This sensitivity to making erroneous predictions in the presence of adversarially perturbed data makes deep neural networks difficult to adopt for certain real-world, mission-critical applications. While much of the research focus has revolved around adversarial example creation and adversarial hardening, the area of performance measures for assessing adversarial robustness is not well explored. Motivated by this, this study presents the concept of residual error, a new performance measure for not only assessing the adversarial robustness of a deep neural network at the individual sample level, but also can be used to differentiate between adversarial and non-adversarial examples to facilitate for adversarial example detection. Furthermore, we introduce a hybrid model for approximating the residual error in a tractable manner. Experimental results using the case of image classification demonstrates the effectiveness and efficacy of the proposed residual error metric for assessing several well-known deep neural network architectures. These results thus illustrate that the proposed measure could be a useful tool for not only assessing the robustness of deep neural networks used in mission-critical scenarios, but also in the design of adversarially robust models.


Vulnerability Under Adversarial Machine Learning: Bias or Variance?

arXiv.org Machine Learning

Prior studies have unveiled the vulnerability of the deep neural networks in the context of adversarial machine learning, leading to great recent attention into this area. One interesting question that has yet to be fully explored is the bias-variance relationship of adversarial machine learning, which can potentially provide deeper insights into this behaviour. The notion of bias and variance is one of the main approaches to analyze and evaluate the generalization and reliability of a machine learning model. Although it has been extensively used in other machine learning models, it is not well explored in the field of deep learning and it is even less explored in the area of adversarial machine learning. In this study, we investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network and analyze how adversarial perturbations can affect the generalization of a network. We derive the bias-variance trade-off for both classification and regression applications based on two main loss functions: (i) mean squared error (MSE), and (ii) cross-entropy. Furthermore, we perform quantitative analysis with both simulated and real data to empirically evaluate consistency with the derived bias-variance tradeoffs. Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation from a bias-variance point of view and how this type of perturbation would change the performance of a network. Moreover, given these new theoretical findings, we introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies (e.g., PGD) while providing a high success rate in fooling deep neural networks in lower perturbation magnitudes.


Learning Modular Safe Policies in the Bandit Setting with Application to Adaptive Clinical Trials

arXiv.org Artificial Intelligence

The stochastic multi-armed bandit problem is a well-known model for studying the exploration-exploitation trade-off. It has significant possible applications in adaptive clinical trials, which allow for dynamic changes in the treatment allocation probabilities of patients. However, most bandit learning algorithms are designed with the goal of minimizing the expected regret. While this approach is useful in many areas, in clinical trials, it can be sensitive to outlier data, especially when the sample size is small. In this paper, we define and study a new robustness criterion for bandit problems. Specifically, we consider optimizing a function of the distribution of returns as a regret measure. This provides practitioners more flexibility to define an appropriate regret measure. The learning algorithm we propose to solve this type of problem is a modification of the BESA algorithm [Baransi et al., 2014], which considers a more general version of regret. We present a regret bound for our approach and evaluate it empirically both on synthetic problems as well as on a dataset from the clinical trial literature. Our approach compares favorably to a suite of standard bandit algorithms.


Learning Predictive State Representations From Non-Uniform Sampling

AAAI Conferences

Predictive state representations (PSR) have emerged as a powerful method for modelling partially observable environments. PSR learning algorithms can build models for predicting all observable variables, or predicting only some of them conditioned on others (e.g., actions or exogenous variables). In the latter case, which we call conditional modelling, the accuracy of different estimates of the conditional probabilities for a fixed dataset can vary significantly, due to the limited sampling of certain conditions. This can have negative consequences on the PSR parameter estimation process, which are not taken into account by the current state-of-the-art PSR spectral learning algorithms. In this paper, we examine closely conditional modelling within the PSR framework. We first establish a new positive but surprisingly non-trivial result: a conditional model can never be larger than the complete model. Then, we address the core shortcoming of existing PSR spectral learning methods for conditional models by incorporating an additional step in the process, which can be seen as a type of matrix denoising. We further refine this objective by adding penalty terms for violations of the system dynamics matrix structure, which improves the PSR predictive performance. Empirical evaluations on both synthetic and real datasets highlight the advantages of the proposed approach.