Plotting

 Abelson, Hal


Co-designing Large Language Model Tools for Project-Based Learning with K12 Educators

arXiv.org Artificial Intelligence

The emergence of generative AI, particularly large language models (LLMs), has opened the door for student-centered and active learning methods like project-based learning (PBL). However, PBL poses practical implementation challenges for educators around project design and management, assessment, and balancing student guidance with student autonomy. The following research documents a co-design process with interdisciplinary K-12 teachers to explore and address the current PBL challenges they face. Through teacher-driven interviews, collaborative workshops, and iterative design of wireframes, we gathered evidence for ways LLMs can support teachers in implementing high-quality PBL pedagogy by automating routine tasks and enhancing personalized learning. Teachers in the study advocated for supporting their professional growth and augmenting their current roles without replacing them. They also identified affordances and challenges around classroom integration, including resource requirements and constraints, ethical concerns, and potential immediate and long-term impacts. Drawing on these, we propose design guidelines for future deployment of LLM tools in PBL.


Understanding Teacher Perspectives and Experiences after Deployment of AI Literacy Curriculum in Middle-school Classrooms

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) and its associated applications are ubiquitous in today's world, making it imperative that students and their teachers understand how it works and the ramifications arising from its usage. In this study, we investigate the experiences of seven teachers following their implementation of modules from the MIT RAICA (Responsible AI for Computational Action) curriculum. Through semi-structured interviews, we investigated their instructional strategies as they engaged with the AI curriculum in their classroom, how their teaching and learning beliefs about AI evolved with the curriculum as well as how those beliefs impacted their implementation of the curriculum. Our analysis suggests that the AI modules not only expanded our teachers' knowledge in the field, but also prompted them to recognize its daily applications and their ethical and societal implications, so that they could better engage with the content they deliver to students. Teachers were able to leverage their own interdisciplinary backgrounds to creatively introduce foundational AI topics to students to maximize engagement and playful learning. Our teachers advocated their need for better external support when navigating technological resources, additional time for preparation given the novelty of the curriculum, more flexibility within curriculum timelines, and additional accommodations for students of determination. Our findings provide valuable insights for enhancing future iterations of AI literacy curricula and teacher professional development (PD) resources.


Post hoc Explanations may be Ineffective for Detecting Unknown Spurious Correlation

arXiv.org Artificial Intelligence

We investigate whether three types of post hoc model explanations--feature attribution, concept activation, and training point ranking--are effective for detecting a model's reliance on spurious signals in the training data. Specifically, we consider the scenario where the spurious signal to be detected is unknown, at test-time, to the user of the explanation method. We design an empirical methodology that uses semi-synthetic datasets along with pre-specified spurious artifacts to obtain models that verifiably rely on these spurious training signals. We then provide a suite of metrics that assess an explanation method's reliability for spurious signal detection under various conditions. We find that the post hoc explanation methods tested are ineffective when the spurious artifact is unknown at test-time especially for non-visible artifacts like a background blur. Further, we find that feature attribution methods are susceptible to erroneously indicating dependence on spurious signals even when the model being explained does not rely on spurious artifacts. This finding casts doubt on the utility of these approaches, in the hands of a practitioner, for detecting a model's reliance on spurious signals.