Goto

Collaborating Authors

 Abdulhai, Marwa


Virtual Personas for Language Models via an Anthology of Backstories

arXiv.org Artificial Intelligence

Large language models (LLMs) are trained from vast repositories of text authored by millions of distinct authors, reflecting an enormous diversity of human traits. While these models bear the potential to be used as approximations of human subjects in behavioral studies, prior efforts have been limited in steering model responses to match individual human users. In this work, we introduce "Anthology", a method for conditioning LLMs to particular virtual personas by harnessing open-ended life narratives, which we refer to as "backstories." We show that our methodology enhances the consistency and reliability of experimental outcomes while ensuring better representation of diverse sub-populations. Across three nationally representative human surveys conducted as part of Pew Research Center's American Trends Panel (ATP), we demonstrate that Anthology achieves up to 18% improvement in matching the response distributions of human respondents and 27% improvement in consistency metrics. Our code and generated backstories are available at https://github.com/CannyLab/anthology.


LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.


Moral Foundations of Large Language Models

arXiv.org Artificial Intelligence

Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model's behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance.


Personality Traits in Large Language Models

arXiv.org Artificial Intelligence

The advent of large language models (LLMs) has revolutionized natural language processing, enabling the generation of coherent and contextually relevant human-like text. As LLMs increasingly power conversational agents used by the general public world-wide, the synthetic personality embedded in these models, by virtue of training on large amounts of human data, is becoming increasingly important. Since personality is a key factor determining the effectiveness of communication, we present a comprehensive method for administering and validating personality tests on widely-used LLMs, as well as for shaping personality in the generated text of such LLMs. Applying this method, we found: 1) personality measurements in the outputs of some LLMs under specific prompting configurations are reliable and valid; 2) evidence of reliability and validity of synthetic LLM personality is stronger for larger and instruction fine-tuned models; and 3) personality in LLM outputs can be shaped along desired dimensions to mimic specific human personality profiles. We discuss application and ethical implications of the measurement and shaping method, in particular regarding responsible AI.


Context-Specific Representation Abstraction for Deep Option Learning

arXiv.org Artificial Intelligence

Hierarchical reinforcement learning has focused on discovering temporally extended actions, such as options, that can provide benefits in problems requiring extensive exploration. One promising approach that learns these options end-to-end is the option-critic (OC) framework. We examine and show in this paper that OC does not decompose a problem into simpler sub-problems, but instead increases the size of the search over policy space with each option considering the entire state space during learning. This issue can result in practical limitations of this method, including sample inefficient learning. To address this problem, we introduce Context-Specific Representation Abstraction for Deep Option Learning (CRADOL), a new framework that considers both temporal abstraction and context-specific representation abstraction to effectively reduce the size of the search over policy space. Specifically, our method learns a factored belief state representation that enables each option to learn a policy over only a subsection of the state space. We test our method against hierarchical, non-hierarchical, and modular recurrent neural network baselines, demonstrating significant sample efficiency improvements in challenging partially observable environments.


A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning

arXiv.org Artificial Intelligence

A fundamental challenge in multiagent reinforcement learning is to learn beneficial behaviors in a shared environment with other agents that are also simultaneously learning. In particular, each agent perceives the environment as effectively non-stationary due to the changing policies of other agents. Moreover, each agent is itself constantly learning, leading to natural nonstationarity in the distribution of experiences encountered. In this paper, we propose a novel meta-multiagent policy gradient theorem that directly accommodates for the non-stationary policy dynamics inherent to these multiagent settings. This is achieved by modeling our gradient updates to directly consider both an agent's own non-stationary policy dynamics and the non-stationary policy dynamics of other agents interacting with it in the environment. We find that our theoretically grounded approach provides a general solution to the multiagent learning problem, which inherently combines key aspects of previous state of the art approaches on this topic. We test our method on several multiagent benchmarks and demonstrate a more efficient ability to adapt to new agents as they learn than previous related approaches across the spectrum of mixed incentive, competitive, and cooperative environments.