Abdul-Mageed, Muhammad
LLM Performance Predictors are good initializers for Architecture Search
Jawahar, Ganesh, Abdul-Mageed, Muhammad, Lakshmanan, Laks V. S., Ding, Dujian
Large language models (LLMs) have become an integral component in solving a wide range of NLP tasks. In this work, we explore a novel use case of using LLMs to build performance predictors (PP): models that, given a specific deep neural network architecture, predict its performance on a downstream task. We design PP prompts for LLMs consisting of: (i) role: description of the role assigned to the LLM, (ii) instructions: set of instructions to be followed by the LLM to carry out performance prediction, (iii) hyperparameters: a definition of each architecture-specific hyperparameter and (iv) demonstrations: sample architectures along with their efficiency metrics and 'training from scratch' performance. For machine translation (MT) tasks, we discover that GPT-4 with our PP prompts (LLM-PP) can predict the performance of architecture with a mean absolute error matching the SOTA and a marginal degradation in rank correlation coefficient compared to SOTA performance predictors. Further, we show that the predictions from LLM-PP can be distilled to a small regression model (LLM-Distill-PP). LLM-Distill-PP models surprisingly retain the performance of LLM-PP largely and can be a cost-effective alternative for heavy use cases of performance estimation. Specifically, for neural architecture search (NAS), we propose a Hybrid-Search algorithm for NAS (HS-NAS), which uses LLM-Distill-PP for the initial part of search, resorting to the baseline predictor for rest of the search. We show that HS-NAS performs very similar to SOTA NAS across benchmarks, reduces search hours by 50% roughly, and in some cases, improves latency, GFLOPs, and model size.
Octopus: A Multitask Model and Toolkit for Arabic Natural Language Generation
Elmadany, AbdelRahim, Nagoudi, El Moatez Billah, Abdul-Mageed, Muhammad
Understanding Arabic text and generating human-like responses is a challenging endeavor. While many researchers have proposed models and solutions for individual problems, there is an acute shortage of a comprehensive Arabic natural language generation toolkit that is capable of handling a wide range of tasks. In this work, we present a novel Arabic text-to-text Transformer model, namely AraT5v2. Our new model is methodically trained on extensive and diverse data, utilizing an extended sequence length of 2,048 tokens. We explore various pretraining strategies including unsupervised, supervised, and joint pertaining, under both single and multitask settings. Our models outperform competitive baselines with large margins. We take our work one step further by developing and publicly releasing Octopus, a Python-based package and command-line toolkit tailored for eight Arabic generation tasks all exploiting a single model. We release the models and the toolkit on our public repository.
JASMINE: Arabic GPT Models for Few-Shot Learning
Nagoudi, El Moatez Billah, Abdul-Mageed, Muhammad, Elmadany, AbdelRahim, Inciarte, Alcides Alcoba, Khondaker, Md Tawkat Islam
Scholarship on generative pretraining (GPT) remains acutely Anglocentric, leaving serious gaps in our understanding of the whole class of autoregressive models. For example, we have little knowledge about the potential of these models and their societal impacts in diverse linguistic and cultural settings. We alleviate this issue for Arabic, a wide collection of languages and dialectal varieties with more than 400 million population, by introducing JASMINE. JASMINE is a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-6.7 billion parameters pretrained on a large and diverse dataset (~ 235 GB of text). We also carefully design and release a comprehensive benchmark for both automated and human evaluation of Arabic autoregressive models, with coverage of potential social biases, harms, and toxicity. Using our novel benchmark, we evaluate JASMINE extensively showing powerful performance intrinsically as well as in few-shot learning on a wide range of NLP tasks. We aim to responsibly release our models and evaluation benchmark with interested researchers, along with code for experimenting with them.
Dolphin: A Challenging and Diverse Benchmark for Arabic NLG
Nagoudi, El Moatez Billah, Elmadany, AbdelRahim, El-Shangiti, Ahmed, Abdul-Mageed, Muhammad
We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several models on our benchmark, allowing us to set strong baselines against which researchers can compare.
WojoodNER 2023: The First Arabic Named Entity Recognition Shared Task
Jarrar, Mustafa, Abdul-Mageed, Muhammad, Khalilia, Mohammed, Talafha, Bashar, Elmadany, AbdelRahim, Hamad, Nagham, Omar, Alaa'
We present WojoodNER-2023, the first Arabic Named Entity Recognition (NER) Shared Task. The primary focus of WojoodNER-2023 is on Arabic NER, offering novel NER datasets (i.e., Wojood) and the definition of subtasks designed to facilitate meaningful comparisons between different NER approaches. WojoodNER-2023 encompassed two Subtasks: FlatNER and NestedNER. A total of 45 unique teams registered for this shared task, with 11 of them actively participating in the test phase. Specifically, 11 teams participated in FlatNER, while $8$ teams tackled NestedNER. The winning teams achieved F1 scores of 91.96 and 93.73 in FlatNER and NestedNER, respectively.
The Skipped Beat: A Study of Sociopragmatic Understanding in LLMs for 64 Languages
Zhang, Chiyu, Doan, Khai Duy, Liao, Qisheng, Abdul-Mageed, Muhammad
Instruction tuned large language models (LLMs), such as ChatGPT, demonstrate remarkable performance in a wide range of tasks. Despite numerous recent studies that examine the performance of instruction-tuned LLMs on various NLP benchmarks, there remains a lack of comprehensive investigation into their ability to understand cross-lingual sociopragmatic meaning (SM), i.e., meaning embedded within social and interactive contexts. This deficiency arises partly from SM not being adequately represented in any of the existing benchmarks. To address this gap, we present SPARROW, an extensive multilingual benchmark specifically designed for SM understanding. SPARROW comprises 169 datasets covering 13 task types across six primary categories (e.g., anti-social language detection, emotion recognition). SPARROW datasets encompass 64 different languages originating from 12 language families representing 16 writing scripts. We evaluate the performance of various multilingual pretrained language models (e.g., mT5) and instruction-tuned LLMs (e.g., BLOOMZ, ChatGPT) on SPARROW through fine-tuning, zero-shot, and/or few-shot learning. Our comprehensive analysis reveals that existing open-source instruction tuned LLMs still struggle to understand SM across various languages, performing close to a random baseline in some cases. We also find that although ChatGPT outperforms many LLMs, it still falls behind task-specific finetuned models with a gap of 12.19 SPARROW score. Our benchmark is available at: https://github.com/UBC-NLP/SPARROW
TARJAMAT: Evaluation of Bard and ChatGPT on Machine Translation of Ten Arabic Varieties
Kadaoui, Karima, Magdy, Samar M., Waheed, Abdul, Khondaker, Md Tawkat Islam, El-Shangiti, Ahmed Oumar, Nagoudi, El Moatez Billah, Abdul-Mageed, Muhammad
Despite the purported multilingual proficiency of instruction-finetuned large language models (LLMs) such as ChatGPT and Bard, the linguistic inclusivity of these models remains insufficiently explored. Considering this constraint, we present a thorough assessment of Bard and ChatGPT (encompassing both GPT-3.5 and GPT-4) regarding their machine translation proficiencies across ten varieties of Arabic. Our evaluation covers diverse Arabic varieties such as Classical Arabic (CA), Modern Standard Arabic (MSA), and several country-level dialectal variants. Our analysis indicates that LLMs may encounter challenges with dialects for which minimal public datasets exist, but on average are better translators of dialects than existing commercial systems. On CA and MSA, instruction-tuned LLMs, however, trail behind commercial systems such as Google Translate. Finally, we undertake a human-centric study to scrutinize the efficacy of the relatively recent model, Bard, in following human instructions during translation tasks. Our analysis reveals a circumscribed capability of Bard in aligning with human instructions in translation contexts. Collectively, our findings underscore that prevailing LLMs remain far from inclusive, with only limited ability to cater for the linguistic and cultural intricacies of diverse communities.
GPTAraEval: A Comprehensive Evaluation of ChatGPT on Arabic NLP
Khondaker, Md Tawkat Islam, Waheed, Abdul, Nagoudi, El Moatez Billah, Abdul-Mageed, Muhammad
ChatGPT's emergence heralds a transformative phase in NLP, particularly demonstrated through its excellent performance on many English benchmarks. However, the model's efficacy across diverse linguistic contexts remains largely uncharted territory. This work aims to bridge this knowledge gap, with a primary focus on assessing ChatGPT's capabilities on Arabic languages and dialectal varieties. Our comprehensive study conducts a large-scale automated and human evaluation of ChatGPT, encompassing 44 distinct language understanding and generation tasks on over 60 different datasets. To our knowledge, this marks the first extensive performance analysis of ChatGPT's deployment in Arabic NLP. Our findings indicate that, despite its remarkable performance in English, ChatGPT is consistently surpassed by smaller models that have undergone finetuning on Arabic. We further undertake a meticulous comparison of ChatGPT and GPT-4's Modern Standard Arabic (MSA) and Dialectal Arabic (DA), unveiling the relative shortcomings of both models in handling Arabic dialects compared to MSA. Although we further explore and confirm the utility of employing GPT-4 as a potential alternative for human evaluation, our work adds to a growing body of research underscoring the limitations of ChatGPT.
ChatGPT for Arabic Grammatical Error Correction
Kwon, Sang Yun, Bhatia, Gagan, Nagoud, El Moatez Billah, Abdul-Mageed, Muhammad
Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to $65.49$ F\textsubscript{1} score under expert prompting (approximately $5$ points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with $72.19\%$ and $73.26$ F$_{1}$ on the 2014 and 2015 QALB datasets, respectively.
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts
Jawahar, Ganesh, Yang, Haichuan, Xiong, Yunyang, Liu, Zechun, Wang, Dilin, Sun, Fei, Li, Meng, Pappu, Aasish, Oguz, Barlas, Abdul-Mageed, Muhammad, Lakshmanan, Laks V. S., Krishnamoorthi, Raghuraman, Chandra, Vikas
Weight-sharing supernet has become a vital component for performance estimation in the state-of-the-art (SOTA) neural architecture search (NAS) frameworks. Although supernet can directly generate different subnetworks without retraining, there is no guarantee for the quality of these subnetworks because of weight sharing. In NLP tasks such as machine translation and pre-trained language modeling, we observe that given the same model architecture, there is a large performance gap between supernet and training from scratch. Hence, supernet cannot be directly used and retraining is necessary after finding the optimal architectures. In this work, we propose mixture-of-supernets, a generalized supernet formulation where mixture-of-experts (MoE) is adopted to enhance the expressive power of the supernet model, with negligible training overhead. In this way, different subnetworks do not share the model weights directly, but through an architecture-based routing mechanism. As a result, model weights of different subnetworks are customized towards their specific architectures and the weight generation is learned by gradient descent. Compared to existing weight-sharing supernet for NLP, our method can minimize the retraining time, greatly improving training efficiency. In addition, the proposed method achieves the SOTA performance in NAS for building fast machine translation models, yielding better latency-BLEU tradeoff compared to HAT, state-of-the-art NAS for MT. We also achieve the SOTA performance in NAS for building memory-efficient task-agnostic BERT models, outperforming NAS-BERT and AutoDistil in various model sizes.