Goto

Collaborating Authors

 Abdolrashidi, Amirali


Age and Gender Prediction From Face Images Using Attentional Convolutional Network

arXiv.org Artificial Intelligence

Automatic prediction of age and gender from face images has drawn a lot of attention recently, due it is wide applications in various facial analysis problems. However, due to the large intra-class variation of face images (such as variation in lighting, pose, scale, occlusion), the existing models are still behind the desired accuracy level, which is necessary for the use of these models in real-world applications. In this work, we propose a deep learning framework, based on the ensemble of attentional and residual convolutional networks, to predict gender and age group of facial images with high accuracy rate. Using attention mechanism enables our model to focus on the important and informative parts of the face, which can help it to make a more accurate prediction. We train our model in a multi-task learning fashion, and augment the feature embedding of the age classifier, with the predicted gender, and show that doing so can further increase the accuracy of age prediction. Our model is trained on a popular face age and gender dataset, and achieved promising results. Through visualization of the attention maps of the train model, we show that our model has learned to become sensitive to the right regions of the face.


GDP: Generalized Device Placement for Dataflow Graphs

arXiv.org Machine Learning

Runtime and scalability of large neural networks can be significantly affected by the placement of operations in their dataflow graphs on suitable devices. With increasingly complex neural network architectures and heterogeneous device characteristics, finding a reasonable placement is extremely challenging even for domain experts. Most existing automated device placement approaches are impractical due to the significant amount of compute required and their inability to generalize to new, previously held-out graphs. To address both limitations, we propose an efficient end-to-end method based on a scalable sequential attention mechanism over a graph neural network that is transferable to new graphs. On a diverse set of representative deep learning models, including Inception-v3, AmoebaNet, Transformer-XL, and WaveNet, our method on average achieves 16% improvement over human experts and 9.2% improvement over the prior art with 15 times faster convergence. To further reduce the computation cost, we pre-train the policy network on a set of dataflow graphs and use a superposition network to fine-tune it on each individual graph, achieving state-of-the-art performance on large hold-out graphs with over 50k nodes, such as an 8-layer GNMT.